Strings and Character Sets Chapter 15

A string is a collection of objects stored in contiguous memory locations. Strings are
usually arrays of bytes, words, or (on 80386 and later processors) double words. The 80x86
microprocessor family supports several instructions specifically designed to cope with
strings. This chapter explores some of the uses of these string instructions.

The 8088, 8086, 80186, and 80286 can process two types of strings: byte strings and
word strings. The 80386 and later processors also handle double word strings. They can
move strings, compare strings, search for a specific value within a string, initialize a string
to a fixed value, and do other primitive operations on strings. The 80x86’s string instruc-
tions are also useful for manipulating arrays, tables, and records. You can easily assign or
compare such data structures using the string instructions. Using string instructions may
speed up your array manipulation code considerably.

15.0 Chapter Overview

This chapter presents a review of the operation of the 80x86 string instructions. Then
it discusses how to process character strings using these instructions. Finally, it concludes
by discussing the string instruction available in the UCR Standard Library. The sections
below that have a “=” prefix are essential. Those sections with a “0” discuss advanced
topics that you may want to put off for a while.

= The 80x86 string instructions.

= Character strings.

= Character string functions.

= String functions in the UCR Standard Library.

O Using the string instructions on other data types.

15.1 The 80x86 String Instructions

All members of the 80x86 family support five different string instructions: movs, cmps,
scas, lods, and stos!. They are the string primitives since you can build most other string
operations from these five instructions. How you use these five instructions is the topic of
the next several sections.

15.1.1 How the String Instructions Operate

The string instructions operate on blocks (contiguous linear arrays) of memory. For
example, the movs instruction moves a sequence of bytes from one memory location to
another. The cmps instruction compares two blocks of memory. The scas instruction scans
a block of memory for a particular value. These string instructions often require three
operands, a destination block address, a source block address, and (optionally) an element
count. For example, when using the movs instruction to copy a string, you need a source
address, a destination address, and a count (the number of string elements to move).

Unlike other instructions which operate on memory, the string instructions are sin-
gle-byte instructions which don’t have any explicit operands. The operands for the string
instructions include

1. The 80186 and later processor support two additional string instructions, INS and OUTS which input strings of
data from an input port or output strings of data to an output port. We will not consider these instructions in this
chapter.

Page 819

Chapter 15

= the si(source index) register,

= the di (destination index) register,

= the cx (count) register,

= the ax register, and

= the direction flag in the FLAGS register.

For example, one variant of the movs (move string) instruction copies a string from the
source address specified by ds:si to the destination address specified by es:di, of length cx.
Likewise, the cmps instruction compares the string pointed at by ds:si, of length cx, to the
string pointed at by es:di.

Not all instructions have source and destination operands (only movs and cmps sup-
port them). For example, the scas instruction (scan a string) compares the value in the
accumulator to values in memory. Despite their differences, the 80x86’s string instructions
all have one thing in common — using them requires that you deal with two segments, the
data segment and the extra segment.

15.1.2

The REP/REPE/REPZ and REPNZ/REPNE Prefixes

The string instructions, by themselves, do not operate on strings of data. The movs
instruction, for example, will move a single byte, word, or double word. When executed
by itself, the movs instruction ignores the value in the cx register. The repeat prefixes tell
the 80x86 to do a multi-byte string operation. The syntax for the repeat prefix is:

Fi el d:
Label repeat nmenoni ¢ oper and ; comment
For MOVS:
rep novs { oper ands}
For QWPS:
repe cnps { oper ands}
repz cnps { oper ands}
repne cnps { oper ands}
repnz cnps { oper ands}
For SCAS:
repe scas { oper ands}
repz scas { oper ands}
repne scas { oper ands}
repnz scas { oper ands}
For STCS:
rep st os { oper ands}

You don’t normally use the repeat prefixes with the lods instruction.

As you can see, the presence of the repeat prefixes introduces a new field in the source
line — the repeat prefix field. This field appears only on source lines containing string
instructions. In your source file:

= the label field should always begin in column one,
= the repeat field should begin at the first tab stop, and
= the mnemonic field should begin at the second tab stop.

When specifying the repeat prefix before a string instruction, the string instruction
repeats cx times?. Without the repeat prefix, the instruction operates only on a single byte,
word, or double word.

2. Except for the cmps instruction which repeats at most the number of times specified in the cx register.

Page 820

Strings and Character Sets

You can use repeat prefixes to process entire strings with a single instruction. You can
use the string instructions, without the repeat prefix, as string primitive operations to syn-
thesize more powerful string operations.

The operand field is optional. If present, MASM simply uses it to determine the size of
the string to operate on. If the operand field is the name of a byte variable, the string
instruction operates on bytes. If the operand is a word address, the instruction operates on
words. Likewise for double words. If the operand field is not present, you must append a
“B”, “W”, or “D” to the end of the string instruction to denote the size, e.g., movsb, movsw,
or movsd.

15.1.3 The Direction Flag

Besides the si, di, si, and ax registers, one other register controls the 80x86’s string
instructions — the flags register. Specifically, the direction flag in the flags register controls
how the CPU processes strings.

If the direction flag is clear, the CPU increments si and di after operating upon each
string element. For example, if the direction flag is clear, then executing movs will move
the byte, word, or double word at ds:si to es:di and will increment si and di by one, two, or
four. When specifying the rep prefix before this instruction, the CPU increments si and di
for each element in the string. At completion, the si and di registers will be pointing at the
first item beyond the string.

If the direction flag is set, then the 80x86 decrements si and di after processing each
string element. After a repeated string operation, the si and di registers will be pointing at
the first byte or word before the strings if the direction flag was set.

The direction flag may be set or cleared using the cld (clear direction flag) and std (set
direction flag) instructions. When using these instructions inside a procedure, keep in
mind that they modify the machine state. Therefore, you may need to save the direction
flag during the execution of that procedure. The following example exhibits the kinds of
problems you might encounter:

StringStuff:
cld
<do some operations>
cal | Str2

<do some string operations requiring D=0>

Str2 proc near
std
<Do some string operations>
ret
Str2 endp

This code will not work properly. The calling code assumes that the direction flag is
clear after Str2 returns. However, this isn’t true. Therefore, the string operations executed
after the call to Str2 will not function properly.

There are a couple of ways to handle this problem. The first, and probably the most
obvious, is always to insert the cld or std instructions immediately before executing a
string instruction. The other alternative is to save and restore the direction flag using the
pushf and popf instructions. Using these two techniques, the code above would look like
this:

Always issuing cld or std before a string instruction:

StringStuff:
cld
<do some operations>
cal l Str2
cld
<do some string operations requiring D=0>

Page 821

Chapter 15

Str2 pr oc near

std
<Do some string operations>
ret
Str2 endp

Saving and restoring the flags register:

StringStuff:
cld
<do some operations>
cal Str2

<do some string operations requiring D=0>

Str2 proc near
pushf
std
<Do some string operations>
popf
ret
Str2 endp

If you use the pushf and popf instructions to save and restore the flags register, keep in
mind that you’re saving and restoring all the flags. Therefore, such subroutines cannot
return any information in the flags. For example, you will not be able to return an error
condition in the carry flag if you use pushf and popf.

15.1.4 The MOVS Instruction

Page 822

The movs instruction takes four basic forms. Movs moves bytes, words, or double
words, movsb moves byte strings, movsw moves word strings, and movsd moves double
word strings (on 80386 and later processors). These four instructions use the following
syntax:

{REP} MOVSB

{REP} MOVSW

{REP} MOVSD ; Avai |l abl e only on 80386 and | ater processors
{REP} MOVS Dest, Source

The movsb (move string, bytes) instruction fetches the byte at address ds:si, stores it at
address es:di, and then increments or decrements the si and di registers by one. If the rep
prefix is present, the CPU checks cx to see if it contains zero. If not, then it moves the byte
from ds:si to es:di and decrements the cx register. This process repeats until cx becomes
zero.

The movsw (move string, words) instruction fetches the word at address ds:si, stores it
at address es:di, and then increments or decrements si and di by two. If there is a rep prefix,
then the CPU repeats this procedure as many times as specified in cx.

The movsd instruction operates in a similar fashion on double words. Incrementing or
decrementing si and di by four for each data movement.

MASM automatically figures out the size of the movs instruction by looking at the size
of the operands specified. If you’ve defined the two operands with the byte (or compara-
ble) directive, then MASM will emit a movsb instruction. If you’ve declared the two labels
via word (or comparable), MASM will generate a movws instruction. If you’ve declared the
two labels with dword, MASM emits a movsd instruction. The assembler will also check the
segments of the two operands to ensure they match the current assumptions (via the
assume directive) about the es and ds registers. You should always use the movsb, movsw,
and movsd forms and forget about the movs form.

Strings and Character Sets

Although, in theory, the movs form appears to be an elegant way to handle the move
string instruction, in practice it creates more trouble than it’s worth. Furthermore, this
form of the move string instruction implies that movs has explicit operands, when, in fact,
the si and di registers implicitly specify the operands. For this reason, we’ll always use the
movsb, movsw, or movsd instructions. When used with the rep prefix, the movsb instruction
will move the number of bytes specified in the cx register. The following code segment
copies 384 bytes from Stringl to String2:

cld
| ea si, Stringl
| ea di, String2
nov cx, 384
rep novsb
Stringl byt e 384 dup (?)
String2 byt e 384 dup (?)

This code, of course, assumes that Stringl and String2 are in the same segment and
both the ds and es registers point at this segment. If you substitute movws for movsb, then
the code above will move 384 words (768 bytes) rather than 384 bytes:

cld
| ea si, Stringl
| ea di, String2
nov cx, 384
rep novsw
Stringl word 384 dup (?)
String2 word 384 dup (?)

Remember, the cx register contains the element count, not the byte count. When using
the movsw instruction, the CPU moves the number of words specified in the cx register.

If you’ve set the direction flag before executing a movsb/movsw/movsd instruction, the
CPU decrements the si and di registers after moving each string element. This means that
the si and di registers must point at the end of their respective strings before issuing a
movsb, movsw, or movsd instruction. For example,

std
| ea si, Stringl+383
| ea di, String2+383
nov cx, 384
rep novsh
Stringl byt e 384 dup (?)
String2 byt e 384 dup (?)

Although there are times when processing a string from tail to head is useful (see the
cmps description in the next section), generally you’ll process strings in the forward direc-
tion since it’s more straightforward to do so. There is one class of string operations where
being able to process strings in both directions is absolutely mandatory: processing strings
when the source and destination blocks overlap. Consider what happens in the following
code:

cld
| ea si, Stringl
| ea di, String2
nov cx, 384
rep novsh
Stringl byt e ?
String2 byt e 384 dup (?)

Page 823

Chapter 15

1St move operation:

/
/7
X A B C D E F G H | J K L
//
T //
29 move operation:
//
/7
X X B C D E F G H | J K L
//

K /

3d move operation:

X X X Cc D E F G H | J K L

K /

4'[h move operation:
//
(44
X X X X D E F G H | J K L
//
T //
nth move operation:
/
l/
X X X X X X X X X X /7 X X L

C U

Figure 15.1 Overwriting Data During a Block Move Operation

Page 824

This sequence of instructions treats Stringl and String2 as a pair of 384 byte strings.
However, the last 383 bytes in the Stringl array overlap the first 383 bytes in the String2
array. Let’s trace the operation of this code byte by byte.

When the CPU executes the movsb instruction, it copies the byte at ds:si (String1) to the
byte pointed at by es:di (String2). Then it increments si and di, decrements cx by one, and
repeats this process. Now the si register points at String1+1 (which is the address of String2)
and the di register points at String2+1. The movsb instruction copies the byte pointed at by
si to the byte pointed at by di. However, this is the byte originally copied from location
String1. So the movsb instruction copies the value originally in location String1 to both loca-
tions String2 and String2+1. Again, the CPU increments si and di, decrements cx, and
repeats this operation. Now the movsb instruction copies the byte from location String1+2
(String2+1) to location String2+2. But once again, this is the value that originally appeared
in location Stringl. Each repetition of the loop copies the next element in Stringl to the next
available location in the String2 array. Pictorially, it looks something like that in
Figure 15.1.

Strings and Character Sets

1St move operation:

1 1 1 1 1 1 1 1 1 1]
X A B Cc D E F |G |H | J K L

2"d move operation:
]]]]]]]]]]]

X A B C D E F G H | J K K
3'd move operation:
| | | | | | | | | |]
X A B C D E F G H | J J K
4t move operation:
| | | | | | | | | |]
X A B C D E F G H | | J K

nth move operation:

I I I I I I I I I I 1
X A|A |B|C DI|lE|F G H |1 J K

i

Figure 15.2 Correct Way to Move Data With a Block Move Operation

The end result is that X gets replicated throughout the string. The move instruction
copies the source operand into the memory location which will become the source oper-
and for the very next move operation, which causes the replication.

If you really want to move one array into another when they overlap, you should
move each element of the source string to the destination string starting at the end of the
two strings as shown in Figure 15.2.

Setting the direction flag and pointing si and di at the end of the strings will allow you
to (correctly) move one string to another when the two strings overlap and the source
string begins at a lower address than the destination string. If the two strings overlap and
the source string begins at a higher address than the destination string, then clear the
direction flag and point si and di at the beginning of the two strings.

If the two strings do not overlap, then you can use either technique to move the
strings around in memory. Generally, operating with the direction flag clear is the easiest,
so that makes the most sense in this case.

You shouldn’t use the movs instruction to fill an array with a single byte, word, or
double word value. Another string instruction, stos, is much better suited for this purpose.
However, for arrays whose elements are larger than four bytes, you can use the movs
instruction to initialize the entire array to the content of the first element. See the questions
for additional information.

Page 825

Chapter 15

15.1.5

Page 826

The CMPS Instruction

The cmps instruction compares two strings. The CPU compares the string referenced
by es:di to the string pointed at by ds:si. Cx contains the length of the two strings (when
using the rep prefix). Like the movs instruction, the MASM assembler allows several differ-
ent forms of this instruction:

{ REPE} owPSB

{ REPE} awPsw

{ REPE} QWPSD ; Avai |l abl e only on 80386 and | ater
{ REPE} aws dest, source

{ REPNE} QWPSD ; Avai |l abl e only on 80386 and | ater
{ REPNE} aw,s dest, source

Like the movs instruction, the operands present in the operand field of the cmps
instruction determine the size of the operands. You specify the actual operand addresses
in the si and di registers.

Without a repeat prefix, the cmps instruction subtracts the value at location es:di from
the value at ds:si and updates the flags. Other than updating the flags, the CPU doesn’t
use the difference produced by this subtraction. After comparing the two locations, cmps
increments or decrements the si and di registers by one, two, or four (for
cmpsb/cmpsw/cmpsd, respectively). Cmps increments the si and di registers if the direction
flag is clear and decrements them otherwise.

Of course, you will not tap the real power of the cmps instruction using it to compare
single bytes or words in memory. This instruction shines when you use it to compare
whole strings. With cmps, you can compare consecutive elements in a string until you find
a match or until consecutive elements do not match.

To compare two strings to see if they are equal or not equal, you must compare corre-
sponding elements in a string until they don’t match. Consider the following strings:

“Stringl”
“Stringl”

The only way to determine that these two strings are equal is to compare each charac-
ter in the first string to the corresponding character in the second. After all, the second
string could have been “String2” which definitely is not equal to “Stringl”. Of course,
once you encounter a character in the destination string which doesn’t equal the corre-
sponding character in the source string, the comparison can stop. You needn’t compare
any other characters in the two strings.

The repe prefix accomplishes this operation. It will compare successive elements in a
string as long as they are equal and cx is greater than zero. We could compare the two
strings above using the following 80x86 assembly language code:

; Assunme both strings are in the sane segnent and ES and DS
both point at this segment.

cld
| ea si, AdrsStringl
| ea di, AdrsString2
nmov cx, 7

repe cnpsb

After the execution of the cmpsb instruction, you can test the flags using the standard
conditional jump instructions. This lets you check for equality, inequality, less than,
greater than, etc.

Character strings are usually compared using lexicographical ordering. In lexicographi-
cal ordering, the least significant element of a string carries the most weight. This is in
direct contrast to standard integer comparisons where the most significant portion of the

Strings and Character Sets

number carries the most weight. Furthermore, the length of a string affects the compari-
son only if the two strings are identical up to the length of the shorter string. For example,
“Zebra” is less than “Zebras”, because it is the shorter of the two strings, however,
“Zebra” is greater than “AAAAAAAAAAH!” even though it is shorter. Lexicographical
comparisons compare corresponding elements until encountering a character which
doesn’t match, or until encountering the end of the shorter string. If a pair of correspond-
ing characters do not match, then this algorithm compares the two strings based on that
single character. If the two strings match up to the length of the shorter string, we must
compare their length. The two strings are equal if and only if their lengths are equal and
each corresponding pair of characters in the two strings is identical. Lexicographical
ordering is the standard alphabetical ordering you’ve grown up with.

For character strings, use the cmps instruction in the following manner:

= The direction flag must be cleared before comparing the strings.

= Use the cmpsb instruction to compare the strings on a byte by byte basis.
Even if the strings contain an even number of characters, you cannot use
the cmpsw instruction. It does not compare strings in lexicographical
order.

= The cx register must be loaded with the length of the smaller string.

= Use the repe prefix.

= The ds:si and es:di registers must point at the very first character in the
two strings you want to compare.

After the execution of the cmps instruction, if the two strings were equal, their lengths
must be compared in order to finish the comparison. The following code compares a cou-
ple of character strings:

| ea si, source
| ea di, dest
nov cx, |lengthSource
nov ax, |engthDest
cnp cx, ax
ja NoSwap
xchg ax, cx
NoSwap: repe cnpsb
j ne Not Equal
nov ax, |engthSource
cnp ax, |engthDest

Not Equal :

If you’re using bytes to hold the string lengths, you should adjust this code appropriately.

You can also use the cmps instruction to compare multi-word integer values (that is,
extended precision integer values). Because of the amount of setup required for a string
comparison, this isn’t practical for integer values less than three or four words in length,
but for large integer values, it’s an excellent way to compare such values. Unlike character
strings, we cannot compare integer strings using a lexicographical ordering. When com-
paring strings, we compare the characters from the least significant byte to the most sig-
nificant byte. When comparing integers, we must compare the values from the most
significant byte (or word/double word) down to the least significant byte, word or double
word. So, to compare two eight-word (128-bit) integer values, use the following code on
the 80286:

std
| ea si, Sourcel nteger +14
| ea di, Destlnteger+14
nov cx, 8

repe cnpsw

This code compares the integers from their most significant word down to the least
significant word. The cmpsw instruction finishes when the two values are unequal or upon
decrementing cx to zero (implying that the two values are equal). Once again, the flags
provide the result of the comparison.

Page 827

Chapter 15

The repne prefix will instruct the cmps instruction to compare successive string ele-
ments as long as they do not match. The 80x86 flags are of little use after the execution of
this instruction. Either the cx register is zero (in which case the two strings are totally dif-
ferent), or it contains the number of elements compared in the two strings until a match.
While this form of the cmps instruction isn’t particularly useful for comparing strings, it is
useful for locating the first pair of matching items in a couple of byte or word arrays. In
general, though, you’ll rarely use the repne prefix with cmps.

One last thing to keep in mind with using the cmps instruction — the value in the cx
register determines the number of elements to process, not the number of bytes. There-
fore, when using cmpsw, cx specifies the number of words to compare. This, of course, is
twice the number of bytes to compare.

15.1.6

The SCAS Instruction

The cmps instruction compares two strings against one another. You cannot use it to
search for a particular element within a string. For example, you could not use the cmps
instruction to quickly scan for a zero throughout some other string. You can use the scas
(scan string) instruction for this task.

Unlike the movs and cmps instructions, the scas instruction only requires a destination
string (es:di) rather than both a source and destination string. The source operand is the
value in the al (scasb), ax (scasw), or eax (scasd) register.

The scas instruction, by itself, compares the value in the accumulator (al, ax, or eax)
against the value pointed at by es:di and then increments (or decrements) di by one, two,
or four. The CPU sets the flags according to the result of the comparison. While this might
be useful on occasion, scas is a lot more useful when using the repe and repne prefixes.

When the repe prefix (repeat while equal) is present, scas scans the string searching
for an element which does not match the value in the accumulator. When using the repne
prefix (repeat while not equal), scas scans the string searching for the first string element
which is equal to the value in the accumulator.

You're probably wondering “why do these prefixes do exactly the opposite of what
they ought to do?” The paragraphs above haven’t quite phrased the operation of the scas
instruction properly. When using the repe prefix with scas, the 80x86 scans through the
string while the value in the accumulator is equal to the string operand. This is equivalent
to searching through the string for the first element which does not match the value in the
accumulator. The scas instruction with repne scans through the string while the accumula-
tor is not equal to the string operand. Of course, this form searches for the first value in the
string which matches the value in the accumulator register. The scas instruction takes the
following forms:

{ REPE} SCASD ; Avai |l abl e only on 80386 and | ater processors
{ REPE} SCAS dest

{ REPNE} SCASW
{ REPNE} SCASD ; Avai |l abl e only on 80386 and | ater processors
{ REPNE} SCAS dest

Like the cmps and movs instructions, the value in the cx register specifies the number
of elements to process, not bytes, when using a repeat prefix.

15.1.7

Page 828

The STOS Instruction

The stos instruction stores the value in the accumulator at the location specified by
es:di. After storing the value, the CPU increments or decrements di depending upon the
state of the direction flag. Although the stos instruction has many uses, its primary use is

Strings and Character Sets
to initialize arrays and strings to a constant value. For example, if you have a 256-byte
array you want to clear out with zeros, use the following code:

Presumably, the ES regi ster already points at the segnent
containing DestString

cld
| ea di, DestString
nov cx, 128 ; 256 bytes is 128 words.
xor ax, ax AX =0
rep st osw

This code writes 128 words rather than 256 bytes because a single stosw operation is
faster than two stosb operations. On an 80386 or later this code could have written 64 dou-
ble words to accomplish the same thing even faster.

The stos instruction takes four forms. They are

{ REP} STCSB
{ REP} STOSW
{ REP} STCSD
{ REF} STCS dest

The stosb instruction stores the value in the al register into the specified memory loca-
tion(s), the stosw instruction stores the ax register into the specified memory location(s)
and the stosd instruction stores eax into the specified location(s). The stos instruction is
either an stosb, stosw, or stosd instruction depending upon the size of the specified oper-
and.

Keep in mind that the stos instruction is useful only for initializing a byte, word, or
dword array to a constant value. If you need to initialize an array to different values, you
cannot use the stos instruction. You can use movs in such a situation, see the exercises for
additional details.

15.1.8 The LODS Instruction

The lods instruction is unique among the string instructions. You will never use a
repeat prefix with this instruction. The lods instruction copies the byte or word pointed at
by ds:si into the al, ax, or eax register, after which it increments or decrements the si register
by one, two, or four. Repeating this instruction via the repeat prefix would serve no pur-
pose whatsoever since the accumulator register will be overwritten each time the lods
instruction repeats. At the end of the repeat operation, the accumulator will contain the
last value read from memory.

Instead, use the lods instruction to fetch bytes (lodsb), words (lodsw), or double words
(lodsd) from memory for further processing. By using the stos instruction, you can synthe-
size powerful string operations.

Like the stos instruction, the lods instruction takes four forms:

{ REP} LCDSB

{ REP} LCDSW

{ REP} LCDSD ; Avai | abl e only on 80386 and | ater
{ REP} LCDS dest

As mentioned earlier, you’ll rarely, if ever, use the rep prefixes with these instructions®.

The 80x86 increments or decrements si by one, two, or four depending on the direction
flag and whether you’re using the lodsb, lodsw, or lodsd instruction.

3. They appear here simply because they are allowed. They’re not useful, but they are allowed.

Page 829

Chapter 15

15.1.9

Building Complex String Functions from LODS and STOS

The 80x86 supports only five different string instructions: movs, cmps, scas, lods, and
stos?. These certainly aren’t the only string operations you’ll ever want to use. However,
you can use the lods and stos instructions to easily generate any particular string operation
you like. For example, suppose you wanted a string operation that converts all the upper
case characters in a string to lower case. You could use the following code:

; Presunably, ES and DS have been set up to point at the same
; segment, the one containing the string to convert.

| ea si, String2Convert
nov di, si
nov cx, LengthOfString
Convert 2Lower : | odsb ; Get next char in str.
cnp al, ‘A ;s it upper case?
ib Not Upper
cnp al, ‘'Z
ja Not Upper
or al, 20h ; Convert to | ower case.
Not Upper : st osb ;Store into destination.
| oop Convert 2Lower

Assuming you’re willing to waste 256 bytes for a table, this conversion operation can
be sped up somewhat using the xlat instruction:

; Presunably, ES and DS have been set up to point at the same
; segment, the one containing the string to be converted.

cld
| ea si, String2Convert
nov di, si
nov cx, LengthOfString
| ea bx, Conver si onTabl e

Convert 2Lower : | odsb ; Get next char in str.
x| at ; Convert as appropriate.
st osb ;Store into destination.
| oop Convert 2Lower

The conversion table, of course, would contain the index into the table at each location
except at offsets 41h..5Ah. At these locations the conversion table would contain the val-
ues 61h..7Ah (i.e., at indexes ‘A’.."Z’ the table would contain the codes for ‘a’..’z’).

Since the lods and stos instructions use the accumulator as an intermediary, you can
use any accumulator operation to quickly manipulate string elements.

15.1.10 Prefixes and the String Instructions

The string instructions will accept segment prefixes, lock prefixes, and repeat prefixes.
In fact, you can specify all three types of instruction prefixes should you so desire. How-
ever, due to a bug in the earlier 80x86 chips (pre-80386), you should never use more than a
single prefix (repeat, lock, or segment override) on a string instruction unless your code
will only run on later processors; a likely event these days. If you absolutely must use two
or more prefixes and need to run on an earlier processor, make sure you turn off the inter-
rupts while executing the string instruction.

4. Not counting INS and OUTS which we’re ignoring here.

Page 830

Strings and Character Sets

15.2 Character Strings

Since you’ll encounter character strings more often than other types of strings, they
deserve special attention. The following sections describe character strings and various
types of string operations.

15.2.1 Types of Strings

At the most basic level, the 80x86’s string instruction only operate upon arrays of
characters. However, since most string data types contain an array of characters as a com-
ponent, the 80x86’s string instructions are handy for manipulating that portion of the
string.

Probably the biggest difference between a character string and an array of characters
is the length attribute. An array of characters contains a fixed number of characters. Never
any more, never any less. A character string, however, has a dynamic run-time length, that
is, the number of characters contained in the string at some point in the program. Charac-
ter strings, unlike arrays of characters, have the ability to change their size during execu-
tion (within certain limits, of course).

To complicate things even more, there are two generic types of strings: statically allo-
cated strings and dynamically allocated strings. Statically allocated strings are given a
fixed, maximum length at program creation time. The length of the string may vary at
run-time, but only between zero and this maximum length. Most systems allocate and
deallocate dynamically allocated strings in a memory pool when using strings. Such
strings may be any length (up to some reasonable maximum value). Accessing such
strings is less efficient than accessing statically allocated strings. Furthermore, garbage
collection® may take additional time. Nevertheless, dynamically allocated strings are
much more space efficient than statically allocated strings and, in some instances, access-
ing dynamically allocated strings is faster as well. Most of the examples in this chapter
will use statically allocated strings.

A string with a dynamic length needs some way of keeping track of this length. While
there are several possible ways to represent string lengths, the two most popular are
length-prefixed strings and zero-terminated strings. A length-prefixed string consists of a
single byte or word that contains the length of that string. Immediately following this
length value, are the characters that make up the string. Assuming the use of byte prefix
lengths, you could define the string “HELLO” as follows:

Hel | oStr byte 5 "HELLO

Length-prefixed strings are often called Pascal strings since this is the type of string
variable supported by most versions of Pascal.

Another popular way to specify string lengths is to use zero-terminated strings. A
zero-terminated string consists of a string of characters terminated with a zero byte. These
types of strings are often called C-strings since they are the type used by the C/C++ pro-
gramming language. The UCR Standard Library, since it mimics the C standard library,
also uses zero-terminated strings.

Pascal strings are much better than C/C++ strings for several reasons. First, comput-
ing the length of a Pascal string is trivial. You need only fetch the first byte (or word) of the
string and you’ve got the length of the string. Computing the length of a C/C++ string is
considerably less efficient. You must scan the entire string (e.g., using the scasb instruc-
tion) for a zero byte. If the C/C++ string is long, this can take a long time. Furthermore,
C/C++ strings cannot contain the NULL character. On the other hand, C/C++ strings can
be any length, yet require only a single extra byte of overhead. Pascal strings, however,

5. Reclaiming unused storage.
6. At least those versions of Pascal which support strings.

Page 831

Chapter 15

can be no longer than 255 characters when using only a single length byte. For strings
longer than 255 bytes, you’ll need two bytes to hold the length for a Pascal string. Since
most strings are less than 256 characters in length, this isn’t much of a disadvantage.

An advantage of zero-terminated strings is that they are easy to use in an assembly
language program. This is particularly true of strings that are so long they require multi-
ple source code lines in your assembly language programs. Counting up every character
in a string is so tedious that it's not even worth considering. However, you can write a
macro which will easily build Pascal strings for you:

PString nacro String
| ocal StringLength, StringStart
byt e StringlLength
StringStart byt e String
StringlLengt h = $-StringStart
endm
PString “This string has a length prefix”

As long as the string fits entirely on one source line, you can use this macro to generate
Pascal style strings.

Common string functions like concatenation, length, substring, index, and others are
much easier to write when using length-prefixed strings. So we’ll use Pascal strings unless
otherwise noted. Furthermore, the UCR Standard library provides a large number of
C/C++ string functions, so there is no need to replicate those functions here.

15.2.2

Page 832

String Assignment

You can easily assign one string to another using the movsb instruction. For example,
if you want to assign the length-prefixed string String1 to String2, use the following:

Presumably, ES and DS are set up al ready

| ea si, Stringl

| ea di, String2

nov ch, 0 ;Extend len to 16 bits.

nov cl, Stringl ;CGet string length.

inc cX ;Include | ength byte.
rep novsh

This code increments cx by one before executing movsb because the length byte contains
the length of the string exclusive of the length byte itself.

Generally, string variables can be initialized to constants by using the PString macro
described earlier. However, if you need to set a string variable to some constant value, you
can write a StrAssign subroutine which assigns the string immediately following the call.
The following procedure does exactly that:

i ncl ude stdlib.a
includelib stdlib.lib

cseg segment para public ‘code’
assune cs: cseg, ds:dseg, es:dseg, ss:sseg

String assi gnnent procedure

Mai nPgm proc far
nov ax, seg dseg
nov ds, ax
nmov es, ax
| ea di, ToString
call StrAssign
byt e “This is an exanpl e of howthe “

Mai nPgm

StrAssign

Strings and Character Sets

byt e “StrAssign routine is used’, 0
nop

Exi t Pgm

endp

proc near

push bp

nov bp, sp

pushf

push ds

push si

push di

push cX

push ax

push di ; Save again for use later
push es

cld

; Get the address of the source string

repne

nmov ax, cs
nmov es, ax

nov di, 2[bp] ; Get return address.

nov cx, Offffh ;Scan for as long as it takes.

nov al, 0 ; Scan for a zero

scashb ; Conmpute the length of string.

neg cX ;Convert length to a positive #.
dec cX ; Because we started with -1, not O
dec cX ;skip zero termnating byte

; Now copy the strings

pop es ; Get destination segment.
pop di ; Get destination address.
nov al, cl ;Store length byte.

st osb

; Now copy the source string.

rep

nov ax, cs
nov ds, ax
nov si, 2[bp]
novsb

; Update the return address and | eave:

StrAssign
cseg

dseg
ToString
dseg

sseg

sseg

inc si ; Skip over zero byte.
nov 2[bp], si
pop ax

pop cX

pop di

pop si

pop ds

popf

pop bp

ret

endp

ends

segment para public ‘data’
byt e 255 dup (0)
ends

segment para stack ‘stack’

wor d 256 dup (?)
ends
end Mai nPgm

Page 833

Chapter 15

This code uses the scas instruction to determine the length of the string immediately
following the call instruction. Once the code determines the length, it stores this length
into the first byte of the destination string and then copies the text following the call to the
string variable. After copying the string, this code adjusts the return address so that it
points just beyond the zero terminating byte. Then the procedure returns control to the
caller.

Of course, this string assignment procedure isn’t very efficient, but it’s very easy to
use. Setting up es:di is all that you need to do to use this procedure. If you need fast string
assignment, simply use the movs instruction as follows:

Presumabl y, DS and ES have al ready been set up.

| ea si, SourceString
| ea di, DestString
nov cx, LengthSource
rep novsh
SourceString byt e Lengt hSour ce- 1
byt e “This is an exanpl e of howthe
byt e “StrAssign routine is used”
Lengt hSour ce = $- SourceString
Dest String byt e 256 dup (?)

Using in-line instructions requires considerably more setup (and typing!), but it is
much faster than the StrAssign procedure. If you don’t like the typing, you can always
write a macro to do the string assignment for you.

15.2.3

Page 834

String Comparison

Comparing two character strings was already beaten to death in the section on the
cmps instruction. Other than providing some concrete examples, there is no reason to con-
sider this subject any further.

Note: all the following examples assume that es and ds are pointing at the proper seg-
ments containing the destination and source strings.

Comparing Strl to Str2:

| ea si, Strl
| ea di, Str2

Get the mnimumlength of the two strings.

nov al, Strl
nov cl, al

cnp al, Str2
ib OowpStrs
nov cl, Str2

Conpare the two strings.

onpStrs: nov ch, 0
cld
repe cnpsb
j ne St r sNot Equal

If OWS thinks they're equal, conpare their |engths
; just to be sure.

cnp al, Str2
St r sNot Equal :

Strings and Character Sets

At label StrsNotEqual, the flags will contain all the pertinent information about the
ranking of these two strings. You can use the conditional jump instructions to test the
result of this comparison.

Character String Functions

Most high level languages, like Pascal, BASIC, “C”, and PL/I, provide several string
functions and procedures (either built into the language or as part of a standard library).
Other than the five string operations provided above, the 80x86 doesn’t support any
string functions. Therefore, if you need a particular string function, you’ll have to write it
yourself. The following sections describe many of the more popular string functions and
how to implement them in assembly language.

Substr

The Substr (substring) function copies a portion of one string to another. In a high level
language, this function usually takes the form:

DestStr : = Substr(SrcStr, | ndex, Lengt h) ;

where:
= DestStr is the name of the string variable where you want to store the sub-
string,
= SrcStr is the name of the source string (from which the substring is to be
taken),
= Index is the starting character position within the string (1..length(SrcStr)),
and

= Length is the length of the substring you want to copy into DestStr.

The following examples show how Substr works.

SrcStr := ‘This is an exanple of a string';
DestStr := Substr(SrcStr, 11,7);
wite(DestStr);

This prints ‘example’. The index value is eleven, so, the Substr function will begin copying
data starting at the eleventh character in the string. The eleventh character is the ‘e’ in
‘example’. The length of the string is seven.

This invocation copies the seven characters ‘example’ to DestStr.

SrcStr := ‘This is an exanple of a string’;
DestStr := Substr(SrcStr, 1, 10);
wite(DestStr);

This prints ‘This is an’. Since the index is one, this occurrence of the Substr function starts
copying 10 characters starting with the first character in the string.

SrcStr := ‘This is an exanple of a string’;
Dest Str := Substr(SrcStr, 20, 11);
wite(DestStr);

This prints ‘of a string’. This call to Substr extracts the last eleven characters in the string.

What happens if the index and length values are out of bounds? For example, what
happens if Index is zero or is greater than the length of the string? What happens if Index is
fine, but the sum of Index and Length is greater than the length of the source string? You
can handle these abnormal situations in one of three ways: (1)ignore the possibility of
error; (2)abort the program with a run-time error; (3)process some reasonable number of
characters in response to the request.

Page 835

Chapter 15

Page 836

The first solution operates under the assumption that the caller never makes a mistake
computing the values for the parameters to the Substr function. It blindly assumes that the
values passed to the Substr function are correct and processes the string based on that
assumption. This can produce some bizarre effects. Consider the following examples,
which use length-prefixed strings:

SourceStr =" 1234567890ABCDEFCH JKLMNCPCRSTUWXYZ' ;
Dest Str := Substr(SourceStr, 0, 5);
Wite('DestStr’);

prints ‘$1234’. The reason, of course, is that SourceStr is a length-prefixed string. Therefore
the length, 36, appears at offset zero within the string. If Substr uses the illegal index of
zero then the length of the string will be returned as the first character. In this particular
case, the length of the string, 36, just happened to correspond to the ASCII code for the ‘$’
character.

The situation is considerably worse if the value specified for Index is negative or is
greater than the length of the string. In such a case, the Substr function would be returning
a substring containing characters appearing before or after the source string. This is not a
reasonable result.

Despite the problems with ignoring the possibility of error in the Substr function, there
is one big advantage to processing substrings in this manner: the resulting Substr code is
more efficient if it doesn’t have to perform any run-time checking on the data. If you know
that the index and length values are always within an acceptable range, then there is no
need to do this checking within Substr function. If you can guarantee that an error will not
occur, your programs will run (somewhat) faster by eliminating the run-time check.

Since most programs are rarely error-free, you’re taking a big gamble if you assume
that all calls to the Substr routine are passing reasonable values. Therefore, some sort of
run-time check is often necessary to catch errors in your program. An error occurs under
the following conditions:

= The index parameter (Index) is less than one.

= Index is greater than the length of the string.

= The Substr length parameter (Length) is greater than the length of the
string.

= The sum of Index and Length is greater than the length of the string.

An alternative to ignoring any of these errors is to abort with an error message. This is
probably fine during the program development phase, but once your program is in the
hands of users it could be a real disaster. Your customers wouldn’t be very happy if they’d
spent all day entering data into a program and it aborted, causing them to lose the data
they’ve entered. An alternative to aborting when an error occurs is to have the Substr func-
tion return an error condition. Then leave it up to the calling code to determine if an error
has occurred. This technique works well with the third alternative to handling errors: pro-
cessing the substring as best you can.

The third alternative, handling the error as best you can, is probably the best alterna-
tive. Handle the error conditions in the following manner:

= The index parameter (Index) is less than one. There are two ways to han-
dle this error condition. One way is to automatically set the Index parame-
ter to one and return the substring beginning with the first character of
the source string. The other alternative is to return the empty string, a
string of length zero, as the substring. Variations on this theme are also
possible. You might return the substring beginning with the first charac-
ter if the index is zero and an empty string if the index is negative.
Another alternative is to use unsigned numbers. Then you’ve only got to
worry about the case where Index is zero. A negative number, should the
calling code accidentally generate one, would look like a large positive
number.

Strings and Character Sets

= The index is greater than the length of the string. If this is the case, then
the Substr function should return an empty string. Intuitively, this is the
proper response in this situation.

= The Substr length parameter (Length) is greater than the length of the
string. -or-

= The sum of Index and Length is greater than the length of the string. Points
three and four are the same problem, the length of the desired substring
extends beyond the end of the source string. In this event, Substr should
return the substring consisting of those characters starting at Index
through the end of the source string.

The following code for the Substr function expects four parameters: the addresses of
the source and destination strings, the starting index, and the length of the desired sub-
string. Substr expects the parameters in the following registers:

ds:si- The address of the source string.
es:di- The address of the destination string.
ch- The starting index.

cl- The length of the substring.

Substr returns the following values:

= The substring, at location es:di.

= Substr clears the carry flag if there were no errors. Substr sets the carry flag
if there was an error.

= Substr preserves all the registers.

If an error occurs, then the calling code must examine the values in si, di and cx to
determine the exact cause of the error (if this is necessary). In the event of an error, the
Substr function returns the following substrings:

= If the Index parameter (ch) is zero, Substr uses one instead.

= The Index and Length parameters are both unsigned byte values, therefore
they are never negative.

= If the Index parameter is greater than the length of the source string, Substr
returns an empty string.

= If the sum of the Index and Length parameters is greater than the length of
the source string, Substr returns only those characters from Index through
the end of the source string. The following code realizes the substring
function.

Substring function.
HL form
;procedure substring(var Src:string;
; I ndex, Length:integer;
var Dest:string);
Src- Address of a source string.
I ndex- Index into the source string.
Length- Length of the substring to extract.
Dest- Address of a destination string.

Copi es the source string fromaddress [Src+i ndex] of length
Length to the destination string.

If an error occurs, the carry flag is returned set, otherw se
clear.

Paraneters are passed as foll ows:

DS: Sl - Source string address.
ES: D - Destination string address.

Page 837

Chapter 15

CH Index into source string.
CL- Length of source string.

and D registers are

length-prefixed strings. That is, the first byte of each
string contains the length of that string.

Note: the strings pointed at by the Sl

Substring

; Check the validity of the parameters.

proc
push
push
push
push
cle
pushf

cnp
ja

nov
dec
add
jc

cnp
j be

near
ax
cX
di

si

ch, [si]
Ret ur nEnpt y
al, ch

al

al, cl
ToolLong

al, [si]
Ckay SoFar

; Assune no error.
;Save direction flag status.

;1s index beyond the | ength of

; the source string?

;See if the sumof index and

; length is beyond the end of the
; string.

;Error if > 255.

; Beyond the |l ength of the source?

; If the substring isn't conpletely contained within the source
; string, truncate it:

ToolLong:

Ckay SoFar :

rep

SubSt r Done:

popf
stc
pushf
nov
sub
i nc

novsb

popf
pop
pop
pop
pop
ret

al, [si]
al, ch
al

cl, al
es:[di], cl
di

al, ch
ch, 0
ah, 0
si, ax
si

di

cX

ax

; Return an enpty string here:

;Return an error flag.

; Get maxi mum | engt h.

; Subtract index val ue.
; Adj ust as appropri ate.
; Save as new | engt h.

; Save destination string |ength.

; Get index into source.

;Zero extend length value into CX
;Zero extend index into AX

; Conput e address of substring.

; Copy the substring.

Ret ur nEnpt y: nov byte ptr es:[di], O
popf
stc
jmp SubSt r Done
SubsString endp
15.3.2 Index

Page 838

The Index string function searches for the first occurrence of one string within another

and returns the offset to that occurrence. Consider the following HLL form:

Strings and Character Sets

SourceStr := ‘Hello world;
TestStr := ‘“world;
| := I NDEX(SourceStr, TestStr);

The Index function scans through the source string looking for the first occurrence of
the test string. If found, it returns the index into the source string where the test string
begins. In the example above, the Index function would return seven since the substring
‘world’ starts at the seventh character position in the source string.

The only possible error occurs if Index cannot find the test string in the source string.
In such a situation, most implementations return zero. Our version will do likewise. The
Index function which follows operates in the following fashion:

1) Itcompares the length of the test string to the length of the source string. If the test
string is longer, Index immediately returns zero since there is no way the test string will be
found in the source string in this situation.

2) The index function operates as follows:

=1
while (i < (length(source)-length(test)) and
test <> substr(source, i, length(test)) do
=0+,

When this loop terminates, if (i < length(source)-length(test)) then it contains the
index into source where test begins. Otherwise test is not a substring of source. Using the
previous example, this loop compares test to source in the following manner:

i=1

test: wor | d No mat ch
sour ce: Hello world

i=2

test: wor | d No mat ch
sour ce: Hello world

i=3

test: wor | d No mat ch
sour ce: Hello world

i =4

test: wor | d No mat ch
sour ce: Hello world

i=5

test: wor | d No mat ch
sour ce: Hell o world

i =6

test: wor | d No mat ch
sour ce: Hell o world

i=7

test: wor | d Mat ch
sour ce: Hell o world

There are (algorithmically) better ways to do this comparison’, however, the algo-
rithm above lends itself to the use of 80x86 string instructions and is very easy to under-
stand. Index’s code follows:

I NDEX- comput es the offset of one string within another.

O entry:

7. The interested reader should look up the Knuth-Morris-Pratt algorithm in “Data Structure Techniques” by Tho-
mas A. Standish. The Boyer-Moore algorithm is another fast string search routine, although somewhat more com-
plex.

Page 839

Chapter 15

; ES: D - Points at the test string that INDEX will search for
; in the source string.
; DS Sl - Points at the source string which (presunmably)
; contains the string INDEX i s searching for.
On exit:
AX- Contains the offset into the source string where the
; test string was found.
I NDEX proc near
push si
push di
push bx
push CX
pushf ; Save direction flag val ue.
cld
nov al, es:[di] ;Cet the length of the test string.
cnp al, [si] ;See if it is longer than the length
ja Not Ther e ; of the source string.

; Conpute the index of the last character we need to conpare the
; test string against in the source string.

nov al, es:[di] ;Length of test string.
nov cl, al ; Save for later.
nov ch, 0
sub al, [si] ; Length of source string.
nov bl, al ;# of times to repeat |oop.
i nc di ; Skip over length byte.
xor ax, ax ;Init index to zero.

OnpLoop: inc ax ; Bump i ndex by one.
i nc si ; Move on to the next char in source.
push si ; Save string pointers and the
push di ; length of the test string.
push cX

rep cnpsb ; Conpare the strings.

pop cX ;Restore string pointers
pop di ; and | ength.
pop si
je Foundi ndex ;I1f we found the substring.
dec bl
jnz OnpLoop ; Try next entry in source string.

; If we fall down here, the test string doesn't appear inside the
; source string.

Not Ther e: xor ax, ax ;Return INDEX = 0

; If the substring was found in the | oop above, renove the
; garbage left on the stack

Foundl ndex: popf
pop cX
pop bx
pop di
pop si
ret

| NDEX endp

15.3.3 Repeat

The Repeat string function expects three parameters— the address of a string, a length,
and a character. It constructs a string of the specified length containing “length” copies of

Page 840

Strings and Character Sets

the specified character. For example, Repeat(STR,5,*') stores the string “*****’ into the STR
string variable. This is a very easy string function to write, thanks to the stosb instruction:

;. REPEAT- Constructs a string of length CX where each el enent
; isinitialized to the character passed in AL.
; Onoentry:
; ES: D - Points at the string to be constructed.
; CX Contains the length of the string.
; AL- Cont ai ns the character with which each el ement of
; the string is to be initialized.
REPEAT proc near
push di
push ax
push cX
pushf ; Save direction flag val ue.
cld
nov es:[di], cl ;Save string |ength.
nov ch, 0 ;Just in case.
inc di ;Start string at next |ocation.
rep st osb
popf
pop cX
pop ax
pop di
ret
REPEAT endp
15.34 Insert

The Insert string function inserts one string into another. It expects three parameters, a
source string, a destination string, and an index. Insert inserts the source string into the
destination string starting at the offset specified by the index parameter. HLLs usually call
the Insert procedure as follows:

source := "' there’;
dest := ‘Hello world;
| NSERT(sour ce, dest , 6) ;

The call to Insert above would change source to contain the string ‘Hello there world’.
It does this by inserting the string * there’ before the sixth character in ‘Hello world’.

The insert procedure using the following algorithm:

Insert(Src,dest,index);

1) Move the characters from location dest+index through the end of the destination
string length (Src) bytes up in memory.

2) Copy the characters from the Src string to location dest+index.

3) Adjust the length of the destination string so that it is the sum of the destination

and source lengths. The following code implements this algorithm:

I NSERT- Inserts one string into another.
O entry:
DS: Sl Points at the source string to be inserted

ES: D Points at the destination string into which the source
string will be inserted.

DX Contains the offset into the destination string where the

Page 841

Chapter 15

Page 842

source string is to be inserted.

Al registers are preserved.

Error condition-

will be returned set.

If the length of the newy created string is greater than 255,
the insert operation wll

not be performed and the carry flag

If the index is greater than the length of the destination

string,
then the source string will be appended to the end of the destin- ; ation
string.
| NSERT proc near
push si
push di
push dx
push cX
push bx
push ax
clc ; Assure no error.
pushf
nov dh, 0 ;Just to be safe.

; First, see if the newstring will be too |ong.

nov ch, 0

nov ah, ch

nov bh, ch

nov al, es:[di] ;AX =1length of dest string.
nov cl, [si] ;X = length of source string.
nov bl, al ;BX = length of new string.
add bl, cl

jc ToolLong ;Abort if too |ong.

nov es:[di], bl ;Update |ength.

; See if the index value is too |arge:

| ndex| sCK:

cnp dl, al
j be I ndex| sCK
nov dl, al

; Now, nake roomfor the string that’s about to be inserted.

push si ; Save for later.
push cX
nov si, di ;Point SI at the end of current
add si, ax ; destination string.
add di, bx ;Point D at the end of new str.
std

rep novsb ; Qpen up space for new string.

; Now, copy the source string into the space opened up.

rep

ToolLong:

| NSERTDone:

pop
pop
add
novsh
Jnp
popf
stc
pushf

popf

cX
si
Si,

cX ;Point at end of source string.

| NSERTDone

Strings and Character Sets

pop ax
pop bx
pop cX
pop dx
pop di
pop si
ret

| NSERT endp

15.3.5

Delete

The Delete string removes characters from a string. It expects three parameters — the
address of a string, an index into that string, and the number of characters to remove from
that string. A HLL call to Delete usually takes the form:

Del ete(Str, i ndex, | ength);

For example,
Str := *Hello there world;
Del ete(str, 7,6);

This call to Delete will leave str containing ‘Hello world’. The algorithm for the delete
operation is the following:

1) Subtract the length parameter value from the length of the destination string and
update the length of the destination string with this new value.

2) Copy any characters following the deleted substring over the top of the deleted
substring.

There are a couple of errors that may occur when using the delete procedure. The
index value could be zero or larger than the size of the specified string. In this case, the
Delete procedure shouldn’t do anything to the string. If the sum of the index and length
parameters is greater than the length of the string, then the Delete procedure should delete
all the characters to the end of the string. The following code implements the Delete proce-
dure:

DELETE - renoves sone substring froma string.

O entry:

DS Points at the source string.

DX Index into the string of the start of the substring
to del ete.

X Length of the substring to be del eted.

Error conditions-

; If DXis greater than the length of the string, then the
; operation is aborted.

; |f DX+CX is greater than the length of the string, DELETE only
; del etes those characters from DX through the end of the string.

DELETE proc near
push es
push si
push di
push ax
push cX
push dx
pushf ; Save direction flag.
nov ax, ds ; Source and destination strings
nmov es, ax ; are the sane.
nov ah, 0

Page 843

Chapter 15

nov dh, ah ;Just to be safe.
nov ch, ah

; See if any error conditions exist.

nov al, [si] ;Get the string length
cnp dl, al ;1's the index too big?
ja TooBi g

nov al, d ; Now see if | NDEX+LENGTH
add al, cl ;is too large

jc Truncate

cnp al, [si]

j be Lengt hl sOK

; If the substring is too big, truncate it to fit.

Truncat e: nov cl, [si] ; Conput e maxi mum | engt h
sub cl, d
inc cl

; Conpute the length of the new string.

Lengt hl sOK: nov al, [si]
sub al, cl
nov [si], al

; Ckay, now del ete the specified substring.

add si, dx ; Conput e address of the substring
nov di, si ; to be deleted, and the address of
add di, cx ; the first character following it
cld
rep novsh ;Delete the string

TooBi g: popf
pop dx
pop cX
pop ax
pop di
pop si
pop es
ret

DELETE endp

15.3.6 Concatenation

The concatenation operation takes two strings and appends one to the end of the
other. For example, Concat(‘Hello ‘,'world’) produces the string ‘Hello world’. Some high
level languages treat concatenation as a function call, others as a procedure call. Since in
assembly language everything is a procedure call anyway, we’ll adopt the procedural syn-
tax. Our Concat procedure will take the following form:

Concat (sour cel, sour ce2, dest) ;
This procedure will copy sourcel to dest, then it will concatenate source2 to the end of
dest. Concat follows:

Concat - Copi es the string pointed at by SI to the string
rointed at byD and then concatenates the string;
pointed at by BX to the destination string.

O entry-

CS: Sl - Points at the first source string
bS: BX- Points at the second source string
ES. D - Points at the destination string.

Page 844

Error condition-

CONCAT proc
push
push
push
push
pushf

Strings and Character Sets

The sumof the lengths of the two strings is greater than 255.
In this event, the second string will be truncated so that the
entire string is less than 256 characters in |ength.

near
si

di
cX
ax

; Copy the first string to the destination string:

nov
nov
nov
nov
add
adc
cnp
ib
nov
nov
Set NewLengt h: nmov
i nc
i nc
rep novsh

al, [si]

cl, al

ch, 0

ah, ch

al, [bx] ; Conpute the sumof the string's
ah, 0 ; lengths.

ax, 256

Set NewLengt h

ah, [si] ; Save original string |ength.
al, 255 ;Fix string length at 255.
es:[di], al ;Save new string |ength.

di ; Skip over length bytes.

si

; Copy sourcel to dest string.

; If the sumof the two strings is too long, the second string

; nmust be truncated.

nmov
cnp
ib

nmov
neg

Lengt hsAredX: | ea
’ cld
rep

popf
pop
pop
pop
pop
ret
CONCAT endp

cl, [bx] ; Get length of second string.
ax, 256
Lengt hsAreCK
cl, ah ; Conput e truncated | ength.
cl ;CL 1= 256-Length(Strl).
si, 1[bx] ;Point at second string and
; skip the string | ength.
novsb ; Performthe concatenation.
ax
cX
di
si

15.4 String Functions in the UCR Standard Library

The UCR Standard Library for 80x86 Assembly Language Programmers provides a
very rich set of string functions you may use. These routines, for the most part, are quite
similar to the string functions provided in the C Standard Library. As such, these functions
support zero terminated strings rather than the length prefixed strings supported by the
functions in the previous sections.

Because there are so many different UCR StdLib string routines and the sources for all
these routines are in the public domain (and are present on the companion CD-ROM for
this text), the following sections will not discuss the implementation of each routine.
Instead, the following sections will concentrate on how to use these library routines.

Page 845

Chapter 15

The UCR library often provides several variants of the same routine. Generally a suf-
fix of “I”, “m”, or “ml|” appears at the end of the name of these variant routines. The “I”
suffix stands for “literal constant”. Routines with the “I” (or “ml”) suffix require two
string operands. The first is generally pointed at by es:di and the second immediate fol-
lows the call in the code stream.

Most StdLib string routines operate on the specified string (or one of the strings if the
function has two operands). The “m” (or “ml”) suffix instructs the string function to allo-
cate storage on the heap (using malloc, hence the “m” suffix) for the new string and store
the modified result there rather than changing the source string(s). These routines always
return a pointer to the newly created string in the es:di registers. In the event of a memory
allocation error (insufficient memory), these routines with the “m” or “ml” suffix return
the carry flag set. They return the carry clear if the operation was successful.

154.1

Page 846

StrBDel, StrBDelm

These two routines delete leading spaces from a string. StrBDel removes any leading
spaces from the string pointed at by es:di. It actually modifies the source string. StrBDelm
makes a copy of the string on the heap with any leading spaces removed. If there are no
leading spaces, then the StrBDel routines return the original string without modification.
Note that these routines only affect leading spaces (those appearing at the beginning of the
string). They do not remove trailing spaces and spaces in the middle of the string. See
Strtrim if you want to remove trailing spaces. Examples:

M/String byt e “ Hello there, this is ny string”,0

M/StrPtr dword M/String
| es di, MStrptr
strbdel m ;Oeates a new string wo |eadi ng spaces,
jc error ; pointer to string is in ES:D on return.
puts ;Print the string pointed at by ES: D .

free ; Deal | ocate storage allocated by strbdel m

: Note that “MyString” still contains the |eading spaces.
; The following printf call will print the string along with
; those | eading spaces. “strbdelni above did not change M/Stri ng.

printf
byt e “M/String = ‘9%’\n",0
dword M/String

l es di, MStrPtr
st r bdel

Now, we really have renoved the | eadi ng spaces from“M/String”
printf
byt e “M/String = ‘9%’\n", 0
dword M/String

Output from this code fragment:

Hello there, this is ny string
M/String = * Hello there, this is ny string
M/String = “‘Hello there, this is ny string

Strings and Character Sets

15.4.2 Strcat, Strcatl, Strcatm, Strcatml

The strcat(xx) routines perform string concatenation. On entry, es:di points at the first
string, and for strcat/strcatm dx:si points at the second string. For strcatl and strcatim the sec-
ond string follows the call in the code stream. These routines create a new string by
appending the second string to the end of the first. In the case of strcat and strcatl, the sec-
ond string is directly appended to the end of the first string (es:di) in memory. You must
make sure there is sufficient memory at the end of the first string to hold the appended
characters. Strcatm and strcatml create a new string on the heap (using malloc) holding the
concatenated result. Examples:

Stringl byt e “Hello “,0
byt e 16 dup (0) ; Room for concat enati on.
String2 byt e “world”, 0

; The following macro loads ES: D with the address of the
; specified operand.

| esi nacro oper and
nov di, seg operand
nov es, di
nov di, offset operand
endm

; The following nmacro loads DX SI with the address of the
; specified operand.

| dxi nacro oper and
nov dx, seg operand
nov si, offset operand
endm
| esi Stringl
| dxi String2
strcatm ;Oreate “Hell o worl d”
jc error ;If insufficient nmenory.
print
byt e “strcatm “,0
puts ;Print “Hello world”
put cr
free ; Deal | ocate string storage.
| esi Stringl ;Oreate the string
strcatn ; “Hello there”
jc error ;I insufficient nmenory.
byt e “there”, 0
print
byt e “strcatm: “,0
puts ;Print “Hello there”
put cr
free
| esi Stringl
| dxi String2
strcat ;Oreate “Hell o worl d”
printf

byt e “strcat: %\n",0

: Note: since strcat above has actually nodified Stringl,
; the following call to strcatl appends “there” to the end
; of the string “Hello world”.

| esi Stringl

Page 847

Chapter 15

strcatl
byt e “there”, 0
printf

byt e “strcatl: %\n",0

The code above produces the following output:

strcatm Hello world
strcatm: Hello there
strcat: Hello world
strcatl: Hello world there

15.4.3 Strchr

Strchr searches for the first occurrence of a single character within a string. In opera-
tion it is quite similar to the scasb instruction. However, you do not have to specify an
explicit length when using this function as you would for scasb.

On entry, es:di points at the string you want to search through, al contains the value to
search for. On return, the carry flag denotes success (C=1 means the character was not
present in the string, C=0 means the character was present). If the character was found in
the string, cx contains the index into the string where strchr located the character. Note
that the first character of the string is at index zero. So strchr will return zero if al matches
the first character of the string. If the carry flag is set, then the value in cx has no meaning.
Example:

Note that the follow ng string has a period at |ocation

; “HasPeriod+24".

HasPeri od byt e “This string has a period.”, 0
| esi HasPeri od ;See strcat for lesi definition.
nov al, “.” ; Search for a period.
strchr
jnc Got Peri od
print
byt e “No period in string”,cr,If,0
j mp Done

If we found the period, output the offset into the string:

Got Peri od: print
byt e “Found period at offset “,0
nov ax, CX
puti
put cr

Done:

This code fragment produces the output:

Found period at offset 24

15.4.4 Strcmp, Strempl, Stricmp, Stricmpl

Page 848

These routines compare strings using a lexicographical ordering. On entry to strcmp or
stricmp, es:di points at the first string and dx:si points at the second string. Strcmp compares
the first string to the second and returns the result of the comparison in the flags register.
Strcmpl operates in a similar fashion, except the second string follows the call in the code
stream. The stricmp and stricmpl routines differ from their counterparts in that they ignore
case during the comparison. Whereas strcmp would return ‘not equal’ when comparing
“Strcmp” with “stremp”, the stricmp (and stricmpl) routines would return “equal” since the

Strings and Character Sets

only differences are upper vs. lower case. The “i” in stricmp and stricmpl stands for “ignore

case.” Examples:

Stringl
String2
String3

IsGrigl:

Tryl:

Not Eqgl :

Tryi:

BadOnp:

Tryil:

BadOnp2:

Done:

byt e
byt e
byt e

| esi

| dxi
strcnp
j ae
printf
byt e
dwor d
Jmp
printf
byt e
dwor d

| esi
strenpl
byt e

j ne
printf
byt e
dwor d
Jnp
printf
byt e
dwor d

| esi

| dxi
stricnp
j ne
printf
byt e
dwor d
Jnp
printf
byt e
dwor d

| esi
stricnpl
byt e

j ne
print
byt e
Jnp
print
byt e

“Hello world”, O
“hello world”, O
“Hello there”, O

Stringl ; See strcat for lesi definition.
String2 ; See strcat for |dxi definition.
Is@&rEgl

“O% is less than %\n",0
Stringl, String2
Tryl

“9% is greater or equal to %\n",0
Stringl, String2
String2

“hi world!'”,0
Not Eql

“Hmm.., % is equal to “hi world!/"\n",0

String2
Tryi

“9% is not equal to ‘hi world!''\n",0
String2

Stringl
String2

BadOnp
“lgnoring case, % equals %\n",0

Stringl, String2
Tryil

“Ww, stricnp doesn’t work! 9% <> %\n",0
Stringl, String2
String2

“hELLO THERE’, O
BadOnp2

“Stricnpl worked”,cr,If,0
Done

“Stricnp did not work”,cr,l1f,0

15.4.5 Strcpy, Strcepyl, Strdup, Strdupl

The strcpy and strdup routines copy one string to another. There is no strcpym or
strcpyml routines. Strdup and strdupl correspond to those operations. The UCR Standard
Library uses the names strdup and strdupl rather than strcpym and strcpyml so it will use the
same names as the C standard library.

Page 849

Chapter 15

Strcpy copies the string pointed at by es:di to the memory locations beginning at the
address in dx:si. There is no error checking; you must ensure that there is sufficient free
space at location dx:si before calling strcpy. Strcpy returns with es:di pointing at the destina-
tion string (that is, the original dx:si value). Strcpyl works in a similar fashion, except the
source string follows the call.

Strdup duplicates the string which es:di points at and returns a pointer to the new
string on the heap. Strdupl works in a similar fashion, except the string follows the call. As
usual, the carry flag is set if there is a memory allocation error when using strdup or strdupl.
Examples:

Stringl byt e “Copy this string”,0
String2 byt e 32 dup (0)
String3 byt e 32 dup (0)
StrVvarl dwor d 0
StrVar2 dwor d 0
| esi Stringl ; See strcat for lesi definition.
| dxi String2 ; See strcat for |dxi definition.
strcpy
| dxi String3
strcpyl
byt e “This string, too!”,0
| esi Stringl
strdup
jc error ;I insufficient mem
nov word ptr StrVvarl, di ; Save away ptr to
nov word ptr StrVarl+2, es ; string.
st rdupl
jc error
byt e “Al'so, this string”,0
nov word ptr StrVar2, di
nov word ptr StrVar2+2, es
printf
byte “strcpy: 9%\n”
byt e “strcpyl: 9%\n”
byt e “strdup: %s\n”
byt e “strdupl: %s\n",0

dwor d String2, String3, Strvarl, StrVar2

15.4.6

Page 850

Strdel, Strdelm

Strdel and strdelm delete characters from a string. Strdel deletes the specified characters
within the string, strdelm creates a new copy of the source string without the specified
characters. On entry, es:di points at the string to manipulate, cx contains the index into the
string where the deletion is to start, and ax contains the number of characters to delete
from the string. On return, es:di points at the new string (which is on the heap if you call
strdelm). For strdelm only, if the carry flag is set on return, there was a memory allocation
error. As with all UCR StdLib string routines, the index values for the string are
zero-based. That is, zero is the index of the first character in the source string. Example:

Stringl byt e “Hello there, how are you?”,0
| esi Stringl ; See strcat for lesi definition.
nov cx, 5 ;Start at position five (“ there”)
nov ax, 6 ; Del ete six characters.
strdel m ; Oreate a new string.
jc error ;I insufficient nmenory.
print
byt e “New string:”,0
puts

put cr

| esi
nov
nov

st rdel
printf
byt e
dwor d

Strings and Character Sets

Stringl
ax, 11
cx, 13

“Mdified string: %\n",0

Stringl

This code prints the following:

New string: Hello, how are you?
Modi fied string: Hello there

15.4.7

Strins, Strinsl, Strinsm, Strinsml

The strins(xx) functions insert one string within another. For all four routines es:di
points at the source string into you want to insert another string. Cx contains the insertion
point (0..length of source string). For strins and strinsm, dx:si points at the string you wish to
insert. For strinsl and strinsml, the string to insert appears as a literal constant in the code
stream. Strins and strins| insert the second string directly into the string pointed at by es:di.
Strinsm and strinsml make a copy of the source string and insert the second string into that
copy. They return a pointer to the new string in es:di. If there is a memory allocation error
then strinsm/strinsml sets the carry flag on return. For strins and strinsl, the first string must
have sufficient storage allocated to hold the new string. Examples:

I nsert | nve byt e
byt e
byt e
dwor d
dwor d

InsertStr
StrPtrl
StrPtr2

| esi
| dxi
nov
strinsm
nov
nov

| esi

nov
strinsm
byt e
nov

nov

| esi
nov
strinsl
byt e

| esi
| dxi
nov
strins

printf
byt e
byt e
byt e
dwor d

“Insert >< Here”,0
16 dup (0)
“insert this”, 0

0

0

InsertinMe ;See strcat for lesi definition.
InsertStr ;See strcat for Idxi definition.
cx, 8 ;Insert before “<*

word ptr StrPtrl, di
word ptr StrPtrl+2, es

I nsert| nMe
cx, 8

“insert that”,0
word ptr StrPtr2, di
word ptr StrPtr2+2, es

I nsert| nMe
cx, 8

“ 0 ; Two spaces
I nsertlnMe

InsertStr

cx, 9 ;In front of first space from above.

“First string: %s\n”
“Second string: 9%s\n”
“Third string: %\n",0
StrPtr1, StrPtr2, Insertlnwe

Note that the strins and strinsl operations above both insert strings into the same destina-
tion string. The output from the above code is

Page 851

Chapter 15

First string: Insert >insert this< here
Second string: Insert >insert that< here
Third string: Insert > insert this < here

15.4.8 Strlen

Strlen computes the length of the string pointed at by es:di. It returns the number of
characters up to, but not including, the zero terminating byte. It returns this length in the
cx register. Example:

CGet Len byt e “This string is 33 characters long”, 0

| esi Get Len ; See strcat for lesi definition.
strlen

print

byt e “The string is “,0

nov ax, cx ;Puti needs the length in AX
puti

print

byt e “ characters long”,cr,If,0

15.4.9 Strlwr, Strlwrm, Strupr, Struprm

Striwr and Strlwrm convert any upper case characters in a string to lower case. Strupr
and Struprm convert any lower case characters in a string to upper case. These routines do
not affect any other characters present in the string. For all four routines, es:di points at the
source string to convert. Striwr and strupr modify the characters directly in that string. Strl-
wrm and struprm make a copy of the string to the heap and then convert the characters in
the new string. They also return a pointer to this new string in es:di. As usual for UCR
StdLib routines, strlwrm and struprm return the carry flag set if there is a memory allocation
error. Examples:

Stringl byt e “This string has | ower case.”, 0
String2 byt e “TH S STRI NG has Upper Case.”, 0
Strphtrl dwor d 0
StrPtr2 dwor d 0
| esi Stringl ; See strcat for lesi definition.
struprm ; Convert |ower case to upper case.
jc error
nov word ptr StrPtrl, di
nov word ptr StrPtrl+2, es
| esi String2
striwm ; Convert upper case to | ower case.
jc error
nov word ptr StrPtr2, di
nov word ptr StrPtr2+2, es
| esi Stringl
striw ; Convert to | ower case, in place.
| esi String2
st rupr ; Convert to upper case, in place.
printf
byt e “struprm 9%s\n”
byt e “strlwm 9%s\n”
byt e “striw: 9%\n”
byt e “strupr: 9%\n",0

dwor d StrPtrl, StrPtr2, Stringl, String2

Page 852

Strings and Character Sets

The above code fragment prints the following:

struprm TH S STR NG HAS LONER CASE
strlwm this string has upper case
strlw: this string has | ower case
strupr: TH S STRI NG HAS UPPER CASE

15.4.10 Strrev, Strrevm

These two routines reverse the characters in a string. For example, if you pass strrev
the string “ABCDEF” it will convert that string to “FEDCBA”. As you’d expect by now,
the strrev routine reverse the string whose address you pass in es:di; strrevm first makes a
copy of the string on the heap and reverses those characters leaving the original string
unchanged. Of course strrevm will return the carry flag set if there was a memory alloca-
tion error. Example:

Pal i ndr one byt e “radar”, 0

Not Pal dr m byt e “x +y - 2z",0

Strhtri dwor d 0
| esi Palindrome ; See strcat for lesi definition.
strrevm
jc error
nov word ptr StrPtrl, di
nov word ptr StrPtrl+2, es
| esi Not Pal dr m
strrev
printf
byt e “First string: %s\n”
byt e “Second string: %\n",0

dwor d StrPtr1, NotPaldrm

The above code produces the following output:

First string: radar
Second string: z - y + X

15.4.11 Strset, Strsetm

Strset and strsetm replicate a single character through a string. Their behavior, how-
ever, is not quite the same. In particular, while strsetm is quite similar to the repeat function
(see “Repeat” on page 840), strset is not. Both routines expect a single character value in
the al register. They will replicate this character throughout some string. Strsetm also
requires a count in the cx register. It creates a string on the heap consisting of cx characters
and returns a pointer to this string in es:di (assuming no memory allocation error). Strset,
on the other hand, expects you to pass it the address of an existing string in es:di. It will
replace each character in that string with the character in al. Note that you do not specify a
length when using the strset function, strset uses the length of the existing string. Exam-

ple:
Stringl byt e “Hello there”, 0
| esi Stringl ; See strcat for lesi definition.
nov al, ‘*’
strset
nov cx, 8
nov al, ‘#
strsetm
print

Page 853

Chapter 15

byt e “String2: “,0

put s

printf

byt e “\nStringl: %\n“,0

dword Stringl

The above code produces the output:

String2: #HiHHHHHHH
Stri ngl: kok Kok ok ok ok ok ok Kok

15.4.12 Strspan, Strspanl, Strcspan, Strcspanl

Page 854

These four routines search through a string for a character which is either in some
specified character set (strspan, strspanl) or not a member of some character set (strcspan,
strcspanl). These routines appear in the UCR Standard Library only because of their
appearance in the C standard library. You should rarely use these routines. The UCR Stan-
dard Library includes some other routines for manipulating character sets and perform-
ing character matching operations. Nonetheless, these routines are somewhat useful on
occasion and are worth a mention here.

These routines expect you to pass them the addresses of two strings: a source string
and a character set string. They expect the address of the source string in es:di. Strspan and
strcspan want the address of the character set string in dx:si; the character set string follows
the call with strspanl and strcspanl. On return, cx contains an index into the string, defined
as follows:

strspan, strspanl: Index of first character in source found in the character set.
strcspan, strespanl: Index of first character in source not found in the character set.

If all the characters are in the set (or are not in the set) then cx contains the index into the
string of the zero terminating byte.

Example:
Sour ce byt e “ ABCDEFG 0123456”, 0
Setl byt e “ ABCDEFGH JKLMNOPQRSTUWAKYZ” , O
Set 2 byte “0123456789", 0
| ndex1 wor d ?
I ndex2 wor d ?
I ndex3 wor d ?
2

| ndex4 wor d

| esi Sour ce ;See strcat for lesi definition.

| dxi Set 1 ; See strcat for ldxi definition.
strspan ; Search for first ALPHA char.
nov I ndexl, cx ;Index of first al phabetic char.
| esi Sour ce

| esi Set 2

strspan ; Search for first nurmeric char.
nov I ndex2, cx

| esi Sour ce

st rcspanl

byte “ ABCDEFGH JKLMNCPCRSTUWAKYZ” , O

nov I ndex3, cx

| esi Set 2

strcspnl

byt e “0123456789", 0

nmov I ndex4, cx

printf

byt e “First alpha char in Source is at offset %l\n”
byt e “First nuneric char is at offset %l\n”

Strings and Character Sets

byt e “First non-alpha in Source is at offset %l\n”
byt e “First non-nuneric in Set2 is at offset %\ n”,0
dwor d I ndex1, Index2, |ndex3, |ndex4

This code outputs the following:

First alpha char in Source is at offset 0
First nuneric char is at offset 8

First non-alpha in Source is at offset 7
First non-nuneric in Set2 is at offset 10

15.4.13 Strstr, Strstrl

Strstr searches for the first occurrence of one string within another. es:di contains the
address of the string in which you want to search for a second string. dx:si contains the
address of the second string for the strstr routine; for strstrl the search second string imme-
diately follows the call in the code stream.

On return from strstr or strstrl, the carry flag will be set if the second string is not
present in the source string. If the carry flag is clear, then the second string is present in the
source string and cx will contain the (zero-based) index where the second string was
found. Example:

SourceStr byt e “Search for ‘this’ in this string”,0
SearchStr byt e “this”, 0
| esi Sour ceStr ;See strcat for lesi definition.
| dxi Sear chStr ;See strcat for ldxi definition.
strstr
jc Not Pr esent
print
byt e “Found string at offset “,0
nov ax, cx ; Need offset in AX for puti
puti
put cr
| esi Sour ceStr
strstrl
byt e “for”,0
jc Not Pr esent
print
byt e “Found ‘for’ at offset “,0
nov ax, cx
put i
put cr
Not Pr esent :

The above code prints the following:

Found string at offset 12
Found ‘for’ at offset 7

15.4.14 Strtrim, Strtrimm

These two routines are quite similar to strbdel and strbdelm. Rather than removing
leading spaces, however, they trim off any trailing spaces from a string. Strtrim trims off
any trailing spaces directly on the specified string in memory. Strtrimm first copies the
source string and then trims and space off the copy. Both routines expect you to pass the
address of the source string in es:di. Strtrimm returns a pointer to the new string (if it could
allocate it) in es:di. It also returns the carry set or clear to denote error/no error. Example:

Page 855

Chapter 15

Stringl byt e “Spaces at the end “,0
String2 byt e “ Spaces on bot h sides “,0
Strphtri dwor d 0

StrPtr2 dword 0

; TrinBpcs trins the spaces off both ends of a string.

; Note that it isalittle nore efficient to performthe

; strbdel first, then the strtrim This routine creates

; the new string on the heap and returns a pointer to this
; string in ES D.

Tri nBpcs proc
strbdel m
jc BadAl | oc ;Just return if error.
strtrim
cle
BadAl | oc: ret
Tri nBpcs endp
| esi Stringl ; See strcat for lesi definition.
strtrinm
jc error
nov word ptr StrPtrl, di
nov word ptr StrPtrl+2, es
| esi String2
call Tri nBpcs
jc error
nov word ptr StrPtr2, di
nov word ptr StrPtr2+2, es
printf
byt e “First string: ‘9%'\n”
byt e “Second string: ‘9%’'\n",0

dwor d StrPtr1, StrbPtr2

This code fragment outputs the following:

First string: ‘Spaces at the end’
Second string: ‘Spaces on both sides’

15.4.15 Other String Routines in the UCR Standard Library

In addition to the “strxxx” routines listed in this section, there are many additional
string routines available in the UCR Standard Library. Routines to convert from numeric
types (integer, hex, real, etc.) to a string or vice versa, pattern matching and character set
routines, and many other conversion and string utilities. The routines described in this
chapter are those whose definitions appear in the “strings.a” header file and are specifi-
cally targeted towards generic string manipulation. For more details on the other string
routines, consult the UCR Standard Library reference section in the appendices.

15.5 The Character Set Routines in the UCR Standard Library

Page 856

The UCR Standard Library provides an extensive collection of character set routines.
These routines let you create sets, clear sets (set them to the empty set), add and remove
one or more items, test for set membership, copy sets, compute the union, intersection, or
difference, and extract items from a set. Although intended to manipulate sets of charac-
ters, you can use the StdLib character set routines to manipulate any set with 256 or fewer
possible items.

Strings and Character Sets

The first unusual thing to note about the StdLib’s sets is their storage format. A 256-bit
array would normally consumes 32 consecutive bytes. For performance reasons, the UCR
Standard Library’s set format packs eight separate sets into 272 bytes (256 bytes for the
eight sets plus 16 bytes overhead). To declare set variables in your data segment you
should use the set macro. This macro takes the form:

set Set Narel, SetNane2, ..., SetNane8

SetNamel..SetName8 represent the names of up to eight set variables. You may have fewer
than eight names in the operand field, but doing so will waste some bits in the set array.

The CreateSets routine provides another mechanism for creating set variables. Unlike
the set macro, which you would use to create set variables in your data segment, the
CreateSets routine allocates storage for up to eight sets dynamically at run time. It returns
a pointer to the first set variable in es:di. The remaining seven sets follow at locations
es:di+1, es:di+2, ..., esidi+7. A typical program that allocates set variables dynamically
might use the following code:

Set 0 dwor d ?

Set 1 dwor d ?

Set 2 dwor d ?

Set 3 dwor d ?

Set4 dwor d ?

Set5 dwor d ?

Set 6 dwor d ?

Set7 dwor d ?
O eateSets
nov word ptr Set0+2, es
nov word ptr Setl1+2, es
nov word ptr Set2+2, es
nov word ptr Set3+2, es
nov word ptr Set4+2, es
nov word ptr Set5+2, es
nov word ptr Set6+2, es
nov word ptr Set7+2, es
nov word ptr SetO, di
i nc di
nov word ptr Setl, di
i nc di
nov word ptr Set2, di
i nc di
nov word ptr Set3, di
i nc di
nov word ptr Set4, di
i nc di
nov word ptr Set5, di
inc di
nov word ptr Set6, di
inc di
nov word ptr Set7, di
i nc di

This code segment creates eight different sets on the heap, all empty, and stores pointers to
them in the appropriate pointer variables.

The SHELL.ASM file provides a commented-out line of code in the data segment that
includes the file STDSETS.A. This include file provides the bit definitions for eight com-
monly used character sets. They are alpha (upper and lower case alphabetics), lower (lower
case alphabetics), upper (upper case alphabetics), digits (“0”..”9”), xdigits (“0”..”9”,
“A”.”F” and “a”..”f”), alphanum (upper and lower case alphabetics plus the digits),
whitespace (space, tab, carriage return, and line feed), and delimiters (whitespace plus com-
mas, semicolons, less than, greater than, and vertical bar). If you would like to use these
standard character sets in your program, you need to remove the semicolon from the
beginning of the include statement in the SHELL.ASM file.

Page 857

Chapter 15

Page 858

The UCR Standard Library provides 16 character set routines: CreateSets, EmptySet,
RangeSet, AddStr, AddStrl, RmvStr, RmvStrl, AddChar, RmvChar, Member, CopySet, SetUnion,
Setintersect, SetDifference, Nextltem, and Rmvitem. All of these routines except CreateSets
require a pointer to a character set variable in the es:di registers. Specific routines may
require other parameters as well.

The EmptySet routine clears all the bits in a set producing the empty set. This routine
requires the address of the set variable in the es:di. The following example clears the set
pointed at by Set1:

| es di, Setl
Enpt y Set

RangeSet unions in a range of values into the set variable pointed at by es:di. The al
register contains the lower bound of the range of items, ah contains the upper bound.
Note that al must be less than or equal to ah. The following example constructs the set of
all control characters (ASCII codes one through 31, the null character [ASCII code zero] is
not allowed in sets):

| es di, arl Char Set ;Ptr to ctrl char set.
nov al, 1

nov ah, 31

RangeSet

AddStr and AddStrl add all the characters in a zero terminated string to a character set.
For AddStr, the dx:si register pair points at the zero terminated string. For AddStrl, the zero
terminated string follows the call to AddStrl in the code stream. These routines union each
character of the specified string into the set. The following examples add the digits and
some special characters into the FPDigits set:

Dgits byt e “0123456789", 0
set FPDi gi t sSet
FPDigits dword FPDi gi t sSet
| dxi Dgits ;Loads DX 'Sl with adrs of Digits.
I es di, FPDgits
Addstr
l es di, FPDigits
AddstrL
byt e “Ee.+-",0

RmvStr and RmvStrl remove characters from a set. You supply the characters in a zero
terminated string. For RmvStr, dx:si points at the string of characters to remove from the
string. For RmvStrl, the zero terminated string follows the call. The following example uses
RmvStrl to remove the special symbols from FPDigits above:

| es di, FPDgits
RSt
byt e “Ee.+-",0

The AddChar and RmvChar routines let you add or remove individual characters. As
usual, es:di points at the set; the al register contains the character you wish to add to the set
or remove from the set. The following example adds a space to the set FPDigits and

removes the “,” character (if present):

| es di, FPDgits
nov al, ‘!
AddChar

| es di, FPDgits
nov al, ‘,’
RhvChar

Strings and Character Sets

The Member function checks to see if a character is in a set. On entry, es:di must point
at the set and al must contain the character to check. On exit, the zero flag is set if the char-
acter is a member of the set, the zero flag will be clear if the character is not in the set. The
following example reads characters from the keyboard until the user presses a key that is
not a whitespace character:

Ski pV\&: get ; Read char fromuser into AL.
| esi Wii teSpace ; Address of W5 set into es:di
nmenber
je Ski pV&

The CopySet, SetUnion, Setintersect, and SetDifference routines all operate on two sets of
characters. The es:di register points at the destination character set, the dx:si register pair
points at a source character set. CopySet copies the bits from the source set to the destina-
tion set, replacing the original bits in the destination set. SetUnion computes the union of
the two sets and stores the result into the destination set. Setintersect computes the set
intersection and stores the result into the destination set. Finally, the SetDifference routine
computes DestSet := DestSet - SrcSet.

The Nextltem and Rmvitem routines let you extract elements from a set. Nextltem
returns in al the ASCII code of the first character it finds in a set. Rmvitem does the same
thing except it also removes the character from the set. These routines return zero in al if
the set is empty (StdLib sets cannot contain the NULL character). You can use the Rmvitem
routine to build a rudimentary iterator for a character set.

The UCR Standard Library’s character set routines are very powerful. With them, you
can easily manipulate character string data, especially when searching for different pat-
terns within a string. We will consider this routines again when we study pattern match-
ing later in this text (see “Pattern Matching” on page 883).

15.6 Using the String Instructions on Other Data Types

The string instructions work with other data types besides character strings. You can
use the string instructions to copy whole arrays from one variable to another, to initialize
large data structures to a single value, or to compare entire data structures for equality or
inequality. Anytime you’re dealing with data structures containing several bytes, you may
be able to use the string instructions.

15.6.1 Multi-precision Integer Strings

The cmps instruction is useful for comparing (very) large integer values. Unlike char-
acter strings, we cannot compare integers with cmps from the L.O. byte through the H.O.
byte. Instead, we must compare them from the H.O. byte down to the L.O. byte. The fol-
lowing code compares two 12-byte integers:

| ea di, integer1+10
| ea si, integer2+10
mov cX, 6
std

repe cnpsw

After the execution of the cmpsw instruction, the flags will contain the result of the com-
parison.

You can easily assign one long integer string to another using the movs instruction.
Nothing tricky here, just load up the si, di, and cx registers and have at it. You must do
other operations, including arithmetic and logical operations, using the extended preci-
sion methods described in the chapter on arithmetic operations.

Page 859

Chapter 15

15.6.2

Dealing with Whole Arrays and Records

The only operations that apply, in general, to all array and record structures are
assignment and comparison (for equality/inequality only). You can use the movs and
cmps instructions for these operations.

Operations such as scalar addition, transposition, etc., may be easily synthesized
using the lods and stos instructions. The following code shows how you can easily add the
value 20 to each element of the integer array A:

AddLoop

| ea
nov
nov
cld

| odsw
add
st osw
| oop

si, A
di, si
cx, SizeOA
ax, 20

AddLoop

You can implement other operations in a similar fashion.

15.7 Sample Programs

In this section there are three sample programs. The first searches through a file for a
particular string and displays the line numbers of any lines containing that string. This
program demonstrates the use of the strstr function (among other things). The second pro-
gram is a demo program that uses several of the string functions available in the UCR
Standard Library’s string package. The third program demonstrates how to use the 80x86
cmps instruction to compare the data in two files. These programs (find.asm, strdemo.asm,
and fcmp.asm) are available on the companion CD-ROM.

15.7.1

Page 860

Find.asm

Fi nd. asm

wp
dseg
Strbtr
Fi | eNane
Li neCnt
FVar

I nput Li ne
dseg

Program Usage:

.xlist
i ncl ude

This programopens a file specified on the command |ine and searches for
a string (also specified on the coomand |ine).

find "string" fil ename

stdlib.a

includelib stdlib.lib

.list
text equ
segment
dword
dwor d
dword

filevar

byte
ends

<word ptr>

para public 'data
?

?
?

{1
1024 dup (?)

Strings and Character Sets

cseg segment para public 'code'
assune cs: cseg, ds:dseg

; Readl n- This procedure reads a line of text fromthe input
; file and buffers it up in the "InputLine" array.
ReadLn proc

push es

push ax

push di

push bx

| esi FVar ;Read fromour file.

nov bx, 0 ; Index into I nputlLine.
ReadLp: fgetc ; Get next char fromfile.

jc EndRead ; Quit on ECF

cnp al, cr ;lgnore carriage returns.

je ReadLp

cnp al, If ;End of line on line feed.

je EndRead

nov I nput Li ne[bx], al

inc bx

jnp ReadLp

; If we hit the end of a line or the end of the file,
; zero-termnate the string.

EndRead: nmov I nput Li ne[bx], O
pop bx
pop di
pop ax
pop es
ret
ReadLn endp

; The fol lowing main programextracts the search string and the
; filenane fromthe coomand |ine, opens the file, and then searches
; for the string in that file.

Mai n proc
nov ax, dseg
nov ds, ax
nmov es, ax
nmem ni t
argc
cnp cx, 2
je CoodAr gs
print
byt e "Usage: find 'string' filename",cr,If,0
jnp Qi t
GoodAr gs: nov ax, 1 ;Get the string to search for
ar gv ; off the command |ine.
nmov wp StrbPtr, di
nmov wp StrPtr+2, es
nov ax, 2 ;Get the filenane fromthe
ar gv ; command |i ne.
nov wp Fil enare, di
nmov wp Fil ename+2, es

; Open the input file for readi ng

nov ax, 0 ; Qpen for read.
nov si, wp FileNane

Page 861

Chapter 15

nov dx, wp FileNanme+2
| esi Fvar

f open

jc BadQpen

; Ckay, start searching for the string in the file.

nov wp LineOnt, O

nov wp Linent+2, 0
Sear chLp: call ReadlLn

jc At ECF

Bunp the line nunber up by one. Note that this is 8086 code
so we have to use extended precision arithmetic to do a 32-bit
add. LineOnt is a 32-bit variabl e because sone files have nore
that 65,536 |ines.

add wp LineOnt, 1
adc wp Linent+2, 0

; Search for the user-specified string on the current I|ine.

| esi I nput Li ne

nov dx, wp StrPtr+2

nov si, wp StrPtr

strstr

jc Sear chLp; Junp if not found.

; Print an appropriate nessage if we found the string.

printf

byt e "Found '%'s' at line %d\n",0
dword StrPtr, LineOnt

jnp Sear chLp

; Oose the file when we're done.

At ECF: | esi FVar
fcl ose
jnp Qi t
Bad(pen: printf
byt e "Error attenpting to open %s\n",cr,If,0

dwor d Fi | eNane

Qit: Exi t Pgm ; DCB macro to quit program
Mai n endp
cseg ends
sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends
zz77277S€g segnment para public 'zzzzzz'
Last Byt es db 16 dup (?)
272727S€egQ ends
end Mai n

15.7.2 StrDemo.asm

This short demo program just shows off how to use several of the string routines
found in the UCR Standard Library strings package.

; StrDeno.asm Dermonstration of sone of the various UCR Standard Library
; string routines.

Page 862

dseg

MemAvai
String

dseg

cseg

Strings and Character Sets

i ncl ude stdlib.a
includelib stdlib.lib

segment para public 'data

wor d ?
byt e 256 dup (0)
ends

segment para public 'code
assune cs: cseg, ds:dseg

proc

nov ax, seg dseg ;Set up the segnent registers
nov ds, ax

nmov es, ax

Merm ni t

nmov MemAvai |, cx

printf

byt e "There are % paragraphs of nermory available."
byt e cr,lf,If,0

dwor d MenAvai

; Denonstration of StrTrim

Hel | oTher el

print

byt e "Testing strtrimon "Hello there "",cr,If,0
st rdupl

byt e "Hello there ",0
strtrim

nmv al,

put c

put s

put c

put cr

free

;Denonstration of StrTrimm

print

byt e "Testing strtrimmon 'Hello there '",cr,If,0
| esi Hel | oTher el

strtrinmm
mv al,
put c

put s

put c

put cr

free

nron

; Denonstration of StrBdel

Hel | oTher e3

print

byt e "Testing strbdel on' Hello there ‘'",cr,If,0
st r dupl

byt e " Hello there ",0

strbde

mv al,
put c

put s

put c

put cr

free

non

Page 863

Chapter 15

; Denonstration of StrBdel m

pri nt

byt e "Testing strbdelmon ' Hello there '",cr,If,0
| esi Hel | oTher e3

strbdel m

nov al, "'"

put ¢

puts

put ¢

put cr

free

; Denonstrate StrQyl:

| dxi string

strcpyl

byt e "Copy this string to the 'String' variable",0
printf

byte "STRNG ="'9%"",cr,If,0

dword String

; Denonstrate StrCatl:

| esi String

strcatl

byte ". Put at end of 'String'",0
printf

byte "STRNG = ",""9%"" ,cr,If,0

dwor d String
; Dermonstrate StrChr:

| esi String
mv al, "'"
strchr

print

byt e "StrChr: First occurrence of ", '"',
byt e "" found at position ',0

nov ax, cXx

puti

put cr

; Denonstrate StrStri:

| esi String
strstrl
byte "String", 0
print
byt e "StrStr: First occurrence of "String" found at *
byt e ‘position ',0
nov ax, cx
puti
put cr
; Demo of StrSet
| esi String
nmov al, '*
strset
printf
byt e "Strset: '%'",cr,If,0

dwor d String

Page 864

; Deno of strlen

Strings and Character Sets

| esi String
strlen
print
byt e "String length =", 0
puti
put cr
Qit: nov ah, 4ch
i nt 21h
Mai n endp
cseg ends
sseg segment para stack 'stack'
stk db 256 dup ("stack ")
sseg ends
zzz77277S€g segnent para public 'zzzzzz'
Last Byt es db 16 dup (?)
z777727seg ends
end Mai n
15.7.3 Fcmp.asm

This is a file comparison program. It demonstrates the use of the 80x86 cmps instruc-
tion (as well as blocked 170 under DOS).

; FOWP. ASM A file conparison programthat denonstrates the use
; of the 80x86 string instructions.

.xli st

i ncl ude stdlib.a

includelib stdlib.lib

st
dseg segment para public 'data'
Nanel dwor d ? ;Ptr to filenane #1
Nane2 dwor d ? ;Ptr to filenane #2
Handl el wor d ? ;File handle for file #1
Hand| e2 wor d ? ;File handle for file #2
Li neOnt wor d 0 ;# of lines in the file.
Buf ferl byt e 256 dup (0) ;Block of data fromfile 1
Buf fer 2 byt e 256 dup (0) ;Block of data fromfile 2
dseg ends
wp equ <word ptr>
cseg segment para public 'code'

assune cs: cseg, ds:dseg

; Error- Prints a DOS error message dependi ng upon the error type.

Error proc
cnp
j ne
print
byt e
Jnp
Not FNF: cnp
j ne

near
ax, 2
Not FNF

"File not found", O
Err or Done

ax, 4
Not TMF

Page 865

Chapter 15

Page 866

print
byt e "Too many open files",0
j mp Er r or Done
Not TMF: cnp ax, 5
j ne Not AD
print
byt e "Access denied", 0
jmp Er r or Done
Not AD: cnp ax, 12
j ne Not | A
print
byt e "lInvalid access", 0
jmp Er r or Done
Not | A:
Er r or Done: put cr
ret
Error endp

; (kay, here's the nain program It opens two files, conpares them and
; conplains if they're different.

Mai n proc
nov ax, seg dseg ;Set up the segnent registers
nov ds, ax
nmov es, ax
nem ni t

; File conmparison routine. First, open the two source files.

argc
cnp cXx, 2 ; Do we have two fil enanes?
je CGot TwoNanes
print
byt e "Usage: fcnp filel file2",cr,If,0
jnp Qi t
Got TwoNarres: nmov ax, 1 ;Get first file nane
ar gv
nov wp Narrel, di
nmov wp Nanmel+2, es

; Qpen the files by calling DCS.

nov ax, 3d00h ; pen for readi ng
I ds dx, Nanel
int 21h
jnc Good(penl
printf
byt e "Error opening %s:",0
dwor d Narel
call Error
jnp Qi t
Good(penl: nov dx, dseg
nov ds, dx
nmov Handl el, ax
nov ax, 2 ; Get second file nane
ar gv
nov wp Narre2, di
nmov wp Nanme2+2, es
nov ax, 3d00h ; Open for reading
I ds dx, Nane2
i nt 21h
jnc Goodpen2
printf

Goodpen2:

; Read the data from
; and conpare it.

OnpLoop:

byt e

| ea
nov
int
jc
cnp
j ne

Strings and Character Sets

"Error opening %s:",0
Narre2
Error

Qit

dx, dseg
ds, dx
Handl e2, ax

the files using blocked I/O

LineCnt, 1

bx, Handl el ; Read 256 bytes from

cx, 256 ; the first file into

dx, Bufferl ; Bufferl.

ah, 3fh

21h

Fil eError

ax, 256 ;Leave if at ECF.
EndOFile

bx, Handl e2 ; Read 256 bytes from

cx, 256 ; the second file into
dx, Buffer2 ; Buffer2

ah, 3fh

21h

Fil eError

ax, 256 ;If we didn't read 256 bytes,
BadLen ; the files are different.

; Ckay, we've just read 256 bytes fromeach file, conpare the buffers
; tosee if the datais the sane in both files.

repe

FileError:

BadLen:

BadOnp:

cnpsb
j ne
Jnp

print
byt e
cal
Jnp
print
byt e

print
byt e

nov
i nt

ax, dseg
ds, ax

es, ax

cx, 256
di, Bufferl
si, Buffer2

BadOnp
OnpLoop

"Error reading files: ",0
Error

Qit

"File lengths were different",cr,If,0

7,"Files were not equal",cr,If,0

ax, 4cO01lh
21h

Exit with error.

; If we reach the end of the first file, conpare any remaining bytes
; inthat first file against the remaining bytes in the second file.

EndC Fi | e:

push
nov
nov
| ea
nov

ax ; Save final |ength.
bx, Handl e2

cx, 256

dx, Buffer2

ah, 3fh

Page 867

Chapter 15

i nt 21h
jc BadOnp
pop bx ;Retrieve filel's Il ength.
cnp ax, bx ;See if file2 matches it.
j ne BadlLen
nov cX, ax ; Conpar e the renaini ng
nov ax, dseg ; bytes down here.
nov ds, ax
nov es, ax
| ea di, Buffer2
| ea si, Bufferl
repe cnpsb

j ne BadOnp

Qit: nmov ax, 4c00h ;Set Exit code to okay.
i nt 21h

Mai n endp

cseg ends

; Allocate a reasonabl e anount of space for the stack (2k).

sseg segment para stack 'stack'
stk byt e 256 dup ("stack ")
sseg ends
zz7777S€g segnent para public 'zzzzzz'
Last Byt es byt e 16 dup (?)
zz7727s€eg ends

end Mai n

15.8 Laboratory Exercises

These exercises use the Ex15_1.asm, Ex15 2.asm, Ex15 3.asm, and Ex15_4.asm files
found on the companion CD-ROM. In this set of laboratory exercises you will be measur-
ing the performance of the 80x86 movs instructions and the (hopefully) minor perfor-
mance differences between length prefixed string operations and zero terminated string
operations.

15.8.1

Page 868

MOVS Performance Exercise #1

The movsb, movsw, and movsd instructions operate at different speeds, even when
moving around the same number of bytes. In general, the movsw instruction is twice as
fast as movsb when moving the same number of bytes. Likewise, movsd is about twice as
fast as movsw (and about four times as fast as movsb) when moving the same number of
bytes. Ex15_1.asm is a short program that demonstrates this fact. This program consists of
three sections that copy 2048 bytes from one buffer to another 100,000 times. The three sec-
tions repeat this operation using the movsb, movsw, and movsd instructions. Run this pro-
gram and time each phase. For your lab report: present the timings on your machine. Be
sure to list processor type and clock frequency in your lab report. Discuss why the timings
are different between the three phases of this program. Explain the difficulty with using
the movsd (versus movsw or movsb) instruction in any program on an 80386 or later proces-
sor. Why is it not a general replacement for movsb, for example? How can you get around
this problem?

; EX15_1. asm

; This programdenonstrates the proper use of the 80x86 string instructions.

. 386
option segnent : usel6

dseg

Buf ferl
Buf f er 2

dseg

cseg

Mai n

i ncl ude

Strings and Character Sets

stdlib.a

includelib stdlib.lib

segment

byt e
byt e

ends

segment
assune

proc
nov
nov
nov
nmem ni t

para public 'data

2048 dup (0)
2048 dup (0)

para public 'code
cs: cseg, ds:dseg

ax, dseg
ds, ax
es, ax

; Denmo of the novsb, novsw, and novsd instructions

novsbLp

nmovswLp

rep

rep

print
byt e
byt e
byt e
byt e
byt e
byt e
byt e
byt e

getc
put cr

nov

| ea
| ea
cld
nov
novsb
dec
jnz

print
byt e
byt e
byt e

getc
put cr

| ea
| ea
cld

nmovsw
dec
jnz

print
byt e
byt e
byt e

getc

"The fol | owi ng code nmoves a bl ock of 2,048 bytes "
"around 100,000 times.",cr,|f

"The first phase does this using the novsb "
"instruction; the second",cr,|f

"phase does this using the movsw instruction

"the third phase does",cr,|f

"this using the novsd instruction.",cr,If,If,If
"Press any key to begin phase one:",0

edx, 100000
si, Bufferl
di, Buffer2
cx, 2048
edx

novsbLp
cr,lf

"Phase one conplete",cr,If,|f
"Press any key to begin phase two:",0

edx, 100000
si, Bufferl
di, Buffer2
cx, 1024
edx

nmovswLp
cr,lf

"Phase two conplete",cr,If,|f
"Press any key to begin phase three:",0

Page 869

Chapter 15

put cr
nov edx, 100000
novsdLp: |l ea si, Bufferl
| ea di, Buffer2
cld
nov cx, 512
rep novsd
dec edx
jnz novsdLp
Qit: Exi t Pgm ;DCB macro to quit program
Mai n endp
cseg ends
sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends
zzz7777S€g segnment para public 'zzzzzz'
Last Byt es db 16 dup (?)
z777727s€eg ends
end Mai n

15.8.2

Page 870

MOVS Performance Exercise #2

In this exercise you will once again time the computer moving around blocks of 2,048
bytes. Like Ex15_1.asm in the previous exercise, Ex15_2.asm contains three phases; the
first phase moves data using the movsb instruction; the second phase moves the data
around using the lodsb and stosb instructions; the third phase uses a loop with simple mov
instructions. Run this program and time the three phases. For your lab report: include the
timings and a description of your machine (CPU, clock speed, etc.). Discuss the timings
and explain the results (consult Appendix D as necessary).

EX15 2. asm

; This program conpares the perfornance of the MOVS instruction agai nst
a manual bl ock nove operation. It also conpares MWVS agai nst a LODS/ STCS

| oop.
. 386
option segnent : usel6
i ncl ude stdlib.a
includelib stdlib.lib
dseg segment para public 'data'
Buf ferl byt e 2048 dup (0)
Buf fer 2 byt e 2048 dup (0)
dseg ends
cseg segment para public 'code'
assune cs: cseg, ds:dseg
Mai n proc
nov ax, dseg
nov ds, ax
nmov es, ax
nem ni t

; MOVSB versi on done here:

novsbLp:

rep

LodsSt osLp:

| odsst osl p2:

MovLp:

MovLp2:

print
byt e
byt e
byt e
byt e
byt e
byt e
byt e
byt e
byt e

getc
put cr

nov

|l ea
| ea
cld
nov
novsb
dec
jnz

print
byt e
byt e
byt e

getc
put cr

Strings and Character Sets

"The fol l owi ng code noves a bl ock of 2,048 bytes "
"around 100,000 times.",cr,|f

"The first phase does this using the novsb "
"instruction; the second",cr,|f

"phase does this using the lods/stos instructions; "
"the third phase does",cr,|f

"this using a loop with MV “
“instructions.",cr,If,If,If

"Press any key to begin phase one:",0

edx, 100000
si, Bufferl
di, Buffer2
cx, 2048
edx

novsbLp
cr,lf

"Phase one conplete",cr,If,|f
"Press any key to begin phase two:",0

edx, 100000

si, Bufferl
di, Buffer2

cx, 2048

LodsSt osLp2
edx
LodsSt osLp

cr,lf
"Phase two conplete",cr,If,|f
"Press any key to begin phase three:",0

edx, 100000
si, Bufferl
di, Buffer2
cx, 2048
al, ds:[si]
es:[di], al
si

di

MovLp2

edx

MovLp

Page 871

Chapter 15

Qit:
Mai n

cseg
sseg

stk
sseg

zzz72775€9
Last Byt es
zzz777s€g

Exi t Pgm
endp

ends

segnent
db
ends

segnent
db
ends
end

; DCB macro to quit program

para stack 'stack
1024 dup ("stack ")

para public 'zzzzzz'
16 dup (?)

Mai n

15.8.3

Page 872

Memory Performance Exercise

In the previous two exercises, the programs accessed a maximum of 4K of data. Since
most modern on-chip CPU caches are at least this big, most of the activity took place
directly on the CPU (which is very fast). The following exercise is a slight modification
that moves the array data in such a way as to destroy cache performance. Run this pro-
gram and time the results. For your lab report: based on what you learned about the

80x86’s cache mechanism in Chapter Three, explain the performance differences.

EX15_3.

asm

Thi s program conpares the perfornmance of the MOVS instruction agai nst

;a nmanual

bl ock move operation. It al so conpares MOVS agai nst a LCDS/ STCS
loop. This version does so in such a way as to w pe out the on-chip CPU
cache
. 386
option segnent : usel6
i ncl ude stdlib.a
includelib stdlib.lib
dseg segment para public 'data
Buf ferl byt e 16384 dup (0)
Buf fer 2 byt e 16384 dup (0)
dseg ends
cseg segment para public 'code
assune cs: cseg, ds:dseg
Mai n proc
nov ax, dseg
nov ds, ax
nmov es, ax
nem ni t

; MOVSB versi on done here:

print
byt e
byt e
byt e
byt e
byt e
byt e
byt e
byt e
byt e

getc

"The fol | owi ng code noves a bl ock of 16,384 bytes "
"around 12,500 tines.",cr,|f

"The first phase does this using the novsb "
"instruction; the second",cr,|f

"phase does this using the |ods/stos instructions;
"the third phase does",cr,|f

"this using a loop with MV instructions."

crolf, If,If

"Press any key to begin phase one:",0

novsbLp

rep

LodsSt osLp:

| odsst osl p2:

MovLp:

MovLp2

Qit:
Mai n
cseg

sseg
stk
sseg

z777277s€g
Last Byt es
z777277s€g

put cr

|l ea
| ea
cld

novsb
dec
jnz

print
byt e
byt e
byt e

getc
put cr

i nc
i nc
| oop
dec
jnz

Exi t Pgm
endp
ends

segnent
db
ends

segnent
db
ends
end

Strings and Character Sets

edx, 12500
si, Bufferl
di, Buffer2
cx, 16384
edx

novsbLp
cr,lf

"Phase one conplete",cr,If,If
"Press any key to begin phase two:",0

edx, 12500

si, Bufferl
di, Buffer2

cx, 16384

LodsSt osLp2
edx
LodsSt osLp

cr,lf
"Phase two conplete",cr,If,If
"Press any key to begin phase three:",0

edx, 12500
si, Bufferl
di, Buffer2
cx, 16384
al, ds:[si]
es:[di], a
S

d

MovLp2

edx

MovLp

; DCB macro to quit program

para stack 'stack
1024 dup ("stack ")

para public 'zzzzzz'
16 dup (?)

Mai n

Page 873

Chapter 15

15.8.4 The Performance of Length-Prefixed vs. Zero-Terminated Strings

The following program (Ex15_4.asm on the companion CD-ROM) executes two mil-
lion string operations. During the first phase of execution, this code executes a sequence of
length-prefixed string operations 1,000,000 times. During the second phase it does a com-
parable set of operation on zero terminated strings. Measure the execution time of each
phase. For your lab report: report the differences in execution times and comment on the
relative efficiency of length prefixed vs. zero terminated strings. Note that the relative per-
formances of these sequences will vary depending upon the processor you use. Based on
what you learned in Chapter Three and the cycle timings in Appendix D, explain some
possible reasons for relative performance differences between these sequences among dif-
ferent processors.

EX15_4. asm

; This program conpares the perfornance of |length prefixed strings versus
; zero termnated strings using sone sinple exanples.

Note: these routines all assume that the strings are in the data segnent
and both ds and es already point into the data segnent.

. 386
option segnent : usel6
i ncl ude stdlib.a

includelib stdlib.lib

dseg segment para public 'data'
LStr1 byt e 17,"This is a string."
LResul t byt e 256 dup (?)

Zstrl byt e "This is a string",0
ZResul t byt e 256 dup (?)

dseg ends

cseg segment para public 'code'

assune cs: cseqg, ds:dseg

LStrQpy: Copies a length prefixed string pointed at by Sl to
the length prefixed string pointed at by D .

LSt r Qoy proc
push si
push di
push cX
cld
nov cl, [si] ;Get length of string.
nov ch, 0
inc cX ;Include | ength byte.

rep novsb

pop cX
pop di
pop si
ret

LSt r Qoy endp

LStrCat - Concat enates the string pointed at by SI to the end

of the string pointed at by D using | ength
prefixed strings.

LSt r Cat proc

Page 874

Strings and Character Sets

push si
push di
push cX
cld

; Conpute the final |ength of the concatenated string

nov cl, [di] ;Get orig length.
nov ch, [si] ; Get 2nd Lengt h.
add [di], ch ; Conput e new | engt h.

; Mwve Sl to the first byte beyond the end of the first string.

nov ch, 0 ; Zero extend orig |en.
add di, cx ; Skip past str.
i nc di ; Skip past length byte.

; Concatenate the second string (SI) to the end of the first string (D)

rep novsh ; Copy 2nd to end of orig.
pop cX
pop di
pop si
ret
LStr Cat endp
; LStrOmp- String conparison using two I ength prefixed strings.

; Sl points at the first string, D points at the
; string to conpare it against.

LStr Onp proc
push si
push di
push cX
cld

; Wien conparing the strings, we need to conpare the strings
; up to the length of the shorter string. The follow ng code
; conputes the nmininumlength of the two strings.

nov cl, [si] ; Get the mnimumof the two | engths
nov ch, [di]
cnp cl, ch
ib HasM n
nov cl, ch

HasM n: nmov ch, 0

repe cnpsb ; Conpare the two strings.

je OnpLen
pop cX
pop di
pop si
ret

; If the strings are equal through the | ength of the shorter string,
; We need to conpare their |engths

OnplLen: pop cX
pop di
pop si
nov cl, [si]
cnp cl, [di]
ret

LStr Op endp

; ZStrQpy- Copies the zero terninated string pointed at by Sl

Page 875

Chapter 15

Page 876

to the zero ternmnated string pointed at by D.

ZSt r Qpy proc
push si
push di
push ax
ZSCLp: nmov al, [si]
i nc si
nov [di], al
i nc di
cnp al, 0
j ne ZSCLp
pop ax
pop di
pop si
ret
ZStr Qpy endp
; ZStrCat- Concat enates the string pointed at by SI to the end
; of the string pointed at by D using zero term nated
; strings.
ZStr Cat proc
push si
push di
push cX
push ax
cld

Find the end of the destination string:

nov cX, OFFFFh
nov al, 0 ; Look for zero byte.
repne scasb

Copy the source string to the end of the destination string:

Zcat Lp: nmv al, [si]
inc si
nov [di], al
i nc di
cnp al, 0
j ne ZCat Lp
pop ax
pop cX
pop di
pop si
ret
ZStr Cat endp
; ZStrOnp- Conpares two zero terninated strings.

This is actually easier than the I ength
prefixed conpari son.

ZStrOnp proc
push cX
push si
push di

)
)
1
)

Conpare the two strings until they are not equal
or until we encounter a zero byte. They are equal
if we encounter a zero byte after conparing the
two characters fromthe strings.

ZOplLp: nmov al, [si]

Strings and Character Sets

i nc si
cnp al, [di]
j ne ZOnpDone
i nc di
cnp al, 0
j ne ZOnpLp
ZOnpDone: pop di
pop si
pop cX
ret
ZStrOnp endp
Mai n proc
nov ax, dseg
nov ds, ax
nmov es, ax
mem ni t
print
byte "The fol | owi ng code does 1,000,000 string "
byte "operations using",cr,If
byt e "length prefixed strings. Measure the anount "
byt e "of tine this code",cr,I|f
byte "takes to run.",cr,If,If
byt e "Press any key to begin:",0
getc
put cr
nov edx, 1000000
LSt r QoyLp: | ea si, LStrl
| ea di, LResult
cal LSt r Cpy
call LSt r Cat
call LSt r Cat
call LSt r Cat
cal | LSt r Cpy
call LStrOmp
call LSt r Cat
call LStrOmp
dec edx
j ne LSt r QoyLp
print
byte "The fol | owi ng code does 1,000,000 string "
byte "operations using",cr,If
byt e "zero termnated strings. Masure the anount "
byt e "of tine this code",cr,|f
byte "takes to run.",cr,If,If
byt e "Press any key to begin:",0
getc
put cr
nov edx, 1000000
ZSt r QpyLp: | ea si, ZStrl
| ea di, ZResult
cal | ZStr Qpy
call ZStr Cat
call ZStr Cat
call ZStr Cat
cal | ZStr Qpy
call ZStr Op
call ZStr Cat
call ZStr Op
dec edx

Page 877

Chapter 15

j ne ZStr QpyLp
Qit: Exi t Pgm ; DCB macro to quit program
Mai n endp
cseg ends
sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends
zz77727s€g segnent para public 'zzzzzz'
Last Byt es db 16 dup (?)
zz77277s€g ends

end Mai n

15.9 Programming Projects

b

2)

3)

4)

5)

6)

Write a SubStr function that extracts a substring from a zero terminated string. Pass a
pointer to the string in ds:si, a pointer to the destination string in es:di, the starting position
in the string in ax, and the length of the substring in cx. Follow all the rules given in sec-
tion 15.3.1 concerning degenerate conditions.

Write a word iterator (see “Iterators” on page 663) to which you pass a string (by reference,
on the stack). Each each iteration of the corresponding foreach loop should extract a word
from this string, malloc sufficient storage for this string on the heap, copy that word (sub-
string) to the malloc’d location, and return a pointer to the word. Write a main program
that calls the iterator with various strings to test it.

Modify the find.asm program (see “Find.asm” on page 860) so that it searches for the
desired string in several files using ambiguous filenames (i.e., wildcard characters). See
“Find First File” on page 729 for details about processing filenames that contain wildcard
characters. You should write a loop that processes all matching filenames and executes the
find.asm core code on each filename that matches the ambiguous filename a user supplies.

Write a strncpy routine that behaves like strcpy except it copies a maximum of n characters
(including the zero terminating byte). Pass the source string’s address in es:di, the destina-
tion string’s address in dx:si, and the maximum length in cx.

The movsb instruction may not work properly if the source and destination blocks overlap
(see “The MOVS Instruction” on page 822). Write a procedure “bcopy” to which you pass
the address of a source block, the address of a destination block, and a length, that will
properly copy the data even if the source and destination blocks overlap. Do this by
checking to see if the blocks overlap and adjusting the source pointer, destination pointer,
and direction flag if necessary.

As you discovered in the lab experiments, the movsd instruction can move a block of data
much faster than movsb or movsw can move that same block. Unfortunately, it can only
move a block that contains an even multiple of four bytes. Write a “fastcopy” routine that
uses the movsd instruction to copy all but the last one to three bytes of a source block to the
destination block and then manually copies the remaining bytes between the blocks. Write
a main program with several boundary test cases to verify correct operation. Compare the
performance of your fastcopy procedure against the use of the movsb instruction.

15.10 Summary

Page 878

The 80sx86 provides a powerful set of string instructions. However, these instructions
are very primitive, useful mainly for manipulating blocks of bytes. They do not corre-
spond to the string instructions one expects to find in a high level language. You can, how-
ever, use the 80x86 string instructions to synthesize those functions normally associated
with HLLs. This chapter explains how to construct many of the more popular string func-

Strings and Character Sets

tions. Of course, it’s foolish to constantly reinvent the wheel, so this chapter also describes
many of the string functions available in the UCR Standard Library.

The 80x86 string instructions provide the basis for many of the string operations
appearing in this chapter. Therefore, this chapter begins with a review and in-depth dis-
cussion of the 80x86 string instructions: the repeat prefixes, and the direction flag. This
chapter discusses the operation of each of the string instructions and describes how you
can use each of them to perform string related tasks. To see how the 80x86 string instruc-
tions operate, check out the following sections:

“The 80x86 String Instructions” on page 819

= “How the String Instructions Operate” on page 819

e “The REP/REPE/REPZ and REPNZ/REPNE Prefixes” on page 820
= “The Direction Flag” on page 821

= “The MOVS Instruction” on page 822

« “The CMPS Instruction” on page 826

= “The SCAS Instruction” on page 828

= “The STOS Instruction” on page 828

= “The LODS Instruction” on page 829

= “Building Complex String Functions from LODS and STOS” on page 830
= “Prefixes and the String Instructions” on page 830

Although Intel calls them “string instructions” they do not actually work on the
abstract data type we normally think of as a character string. The string instructions sim-
ply manipulate arrays of bytes, words, or double words. It takes a little work to get these
instructions to deal with true character strings. Unfortunately, there isn’t a single defini-
tion of a character string which, no doubt, is the reason there aren’t any instructions spe-
cifically for character strings in the 80x86 instruction set. Two of the more popular
character string types include length prefixed strings and zero terminated strings which
Pascal and C use, respectively. Details on string formats appear in the following sections:

= “Character Strings” on page 831
= “Types of Strings” on page 831

Once you decide on a specific data type for you character strings, the next step is to
implement various functions to process those strings. This chapter provides examples of
several different string functions designed specifically for length prefixed strings. To learn
about these functions and see the code that implements them, look at the following sec-
tions:

= “String Assignment” on page 832

= “String Comparison” on page 834

= “Character String Functions” on page 835
= “Substr” on page 835

= “Index” on page 838

= “Repeat” on page 840

= “Insert” on page 841

= “Delete” on page 843

= “Concatenation” on page 844

The UCR Standard Library provides a very rich set of string functions specifically
designed for zero germinated strings. For a description of many of these routines, read the
following sections:

= “String Functions in the UCR Standard Library” on page 845
“StrBDel, StrBDelm” on page 846

= “Strcat, Strcatl, Strcatm, Strcatml” on page 847

= “Strchr” on page 848

= “Strcmp, Strcempl, Stricmp, Stricmpl” on page 848

= “Strcpy, Strepyl, Strdup, Strdupl” on page 849

Page 879

Chapter 15

Page 880

= “Strdel, Strdelm” on page 850

e “Strins, Strinsl, Strinsm, Strinsm|”” on page 851

= “Strlen” on page 852

e “Strlwr, Strlwrm, Strupr, Struprm” on page 852

= “Strrev, Strrevm” on page 853

= “Strset, Strsetm” on page 853

= “Strspan, Strspanl, Strcspan, Strcspanl” on page 854

e “Strstr, Strstrl” on page 855

e “Strtrim, Strtrimm” on page 855

= “Other String Routines in the UCR Standard Library” on page 856

As mentioned earlier, the string instructions are quite useful for many operations
beyond character string manipulation. This chapter closes with some sections describing
other uses for the string instructions. See

= “Using the String Instructions on Other Data Types” on page 859
= “Multi-precision Integer Strings” on page 859
= “Dealing with Whole Arrays and Records” on page 860

The set is another common abstract data type commonly found in programs today. A
set is a data structure which represent membership (or lack thereof) of some group of
objects. If all objects are of the same underlying base type and there is a limited number of
possible objects in the set, then we can use a bit vector (array of booleans) to represent the
set. The bit vector implementation is very efficient for small sets. The UCR Standard
Library provides several routines to manipulate character sets and other sets with a maxi-
mum of 256 members. For more details,

= “The Character Set Routines in the UCR Standard Library” on page 856

Strings and Character Sets

15.11 Questions

b
2)

3)
4)

5)

6)

7)

8)

9)

10)

11)

12)
13)
14)
15)
16)

17)
18)

19)

20)

21)

22)

What are the repeat prefixes used for?
Which string prefixes are used with the following instructions?
a) MOVS b)) CMPS c) STOS d) SCAS
Why aren’t the repeat prefixes normally used with the LODS instruction?

What happens to the SI, DI, and CX registers when the MOVSB instruction is executed
(without a repeat prefix) and:

a) the direction flag is set. b) the direction flag is clear.

Explain how the MOVSB and MOVSW instructions work. Describe how they affect mem-
ory and registers with and without the repeat prefix. Describe what happens when the
direction flag is set and clear.

How do you preserve the value of the direction flag across a procedure call?

How can you ensure that the direction flag always contains a proper value before a string
instruction without saving it inside a procedure?

What is the difference between the “MOVSB”, “MOVSW”, and “MOVS oprndl,oprnd2”
instructions?

Consider the following Pascal array definition:

a:array [0..31] of record
a, b, c: char;
i,j,kiinteger;
end;

Assuming A[0] has been initialized to some value, explain how you can use the MOVS
instruction to initialize the remaining elements of A to the same value as A[0].
Give an example of a MOVS operation which requires the direction flag to be:

a) clear b) set

How does the CMPS instruction operate? (what does it do, how does it affect the registers
and flags, etc.)

Which segment contains the source string? The destination string?

What is the SCAS instruction used for?

How would you quickly initialize an array to all zeros?

How are the LODS and STOS instructions used to build complex string operations?

How would you use the SUBSTR function to extract a substring of length 6 starting at off-
set 3 in the StrVar variable, storing the substring in the NewsStr variable?

What types of errors can occur when the SUBSTR function is executed?
Give an example demonstrating the use of each of the following string functions:
a) INDEX b)REPEAT c¢) INSERT d) DELETE e) CONCAT

Write a short loop which multiplies each element of a single dimensional array by 10. Use
the string instructions to fetch and store each array element.

The UCR Standard Library does not provide an STRCPYM routine. What is the routine
which performs this task?

Suppose you are writing an “adventure game” into which the player types sentences and
you want to pick out the two words “GO” and “NORTH?”, if they are present, in the input
line. What (non-UCR StdLib) string function appearing in this chapter would you use to
search for these words? What UCR Standard Library routine would you use?

Explain how to perform an extended precision integer comparison using CMPS

Page 881

Chapter 15

Page 882

