
Chapter 1. The UNIX Operating System

Introduction
This chapter introduces you to the UNIX operating system. We first look at what is an operating
system and then proceed to discuss the different features of UNIX that have made it a popular
operating system.

Objectives

• What is an operating system (OS)?
• Features of UNIX OS
• A Brief History of UNIX OS, POSIX and Single Unix Specification (SUS)

1. What is an operating system (OS)?
An operating system (OS) is a resource manager. It takes the form of a set of software routines that
allow users and application programs to access system resources (e.g. the CPU, memory, disks,
modems, printers, network cards etc.) in a safe, efficient and abstract way. 
For example, an OS ensures safe access to a printer by allowing only one application program to
send data directly to the printer at any one time. An OS encourages  efficient  use of the CPU by
suspending programs that are waiting for I/O operations to complete to make way for programs that
can use the CPU more productively. An OS also provides convenient  abstractions  (such as files
rather than disk locations) which isolate application programmers and users from the details of the
underlying hardware.

UNIX Operating system allows complex tasks to be performed with a few keystrokes. It doesn’t tell
or warn the user about the consequences of the command. 
Kernighan and Pike (The UNIX Programming Environment) lamented long ago that “as the UNIX
system has  spread,  the  fraction  of  its  users  who  are  skilled  in  its  application  has  decreased.”
However, the capabilities of UNIX are limited only by your imagination.

2. Features of UNIX OS
Several features of UNIX have made it popular. Some of them are:

Portable
UNIX can  be  installed  on  many  hardware  platforms.  Its  widespread  use  can  be  traced  to  the
decision to develop it using the C language. 

Multiuser
The UNIX design allows multiple users to concurrently share hardware and software

Multitasking
UNIX allows a user to run more than one program at a time. In fact more than one program can be



running in the background while a user is working foreground.

Networking
While UNIX was developed to be an interactive, multiuser, multitasking system, networking is also
incorporated  into  the  heart  of  the  operating  system.  Access  to  another  system uses  a  standard
communications protocol known as Transmission Control Protocol/Internet Protocol (TCP/IP).

Organized File System
UNIX has a very organized file and directory system that allows users to organize and maintain
files.

Device Independence
UNIX treats input/output devices like ordinary files. The source or destination for file input and
output is easily controlled through a UNIX design feature called redirection.

Utilities
UNIX provides a rich library of utilities that can be use to increase user productivity.

3. A Brief History of UNIX
In the late 1960s, researchers from General Electric, MIT and Bell Labs launched a joint project to
develop an ambitious multi-user, multi-tasking OS for mainframe computers known as MULTICS
(Multiplexed  Information  and  Computing  System).  MULTICS  failed,  but  it  did  inspire  Ken
Thompson, who was a researcher at Bell Labs, to have a go at writing a simpler operating system
himself. He wrote a simpler version of MULTICS on a PDP7 in assembler and called his attempt
UNICS (Uniplexed Information and Computing System). Because memory and CPU power were at
a  premium  in  those  days,  UNICS  (eventually  shortened  to  UNIX)  used  short  commands  to
minimize the space needed to store them and the time needed to decode them - hence the tradition
of short UNIX commands we use today, e.g. ls, cp, rm, mv etc. 
Ken Thompson then teamed up with Dennis Ritchie, the author of the first C compiler in 1973.
They  rewrote  the  UNIX kernel  in  C  -  this  was  a  big  step  forwards  in  terms  of  the  system's
portability - and released the Fifth Edition of UNIX to universities in 1974. The Seventh Edition,
released in 1978, marked a split in UNIX development into two main branches: SYSV (System 5)
and  BSD  (Berkeley  Software  Distribution).  BSD  arose  from  the  University  of  California  at
Berkeley where Ken Thompson spent a sabbatical year. Its development was continued by students
at Berkeley and other research institutions. SYSV was developed by AT&T and other commercial
companies. UNIX flavors based on SYSV have traditionally been more conservative, but better
supported than BSD-based flavors. 
Until recently, UNIX standards were nearly as numerous as its variants. In early days, AT&T
published a document called System V Interface Definition (SVID). X/OPEN (now The Open
Group), a consortium of vendors and users, had one too, in the X/Open Portability Guide
(XPG). In the US, yet another set of standards, named Portable Operating System Interface
for Computer Environments  (POSIX),  were  developed  at  the  behest  of  the  Institution  of
Electrical and Electronics Engineers (IEEE).
In 1998, X/OPEN and IEEE undertook an ambitious program of unifying the two standards.
In  2001,  this  joint  initiative  resulted  in  a  single  specification  called  the  Single  UNIX
Specification, Version 3 (SUSV3), that is also known as IEEE 1003.1:2001 (POSIX.1). In 2002,
the  International  Organization  for  Standardization  (ISO)  approved  SUSV3  and  IEEE
1003.1:2001.

Some of the commercial UNIX based on system V are:
• IBM's AIX 



• Hewlett-Packard's HPUX 
• SCO's Open Server Release 5 
• Silicon Graphics' IRIS 
• DEC's Digital UNIX 
• Sun Microsystems' Solaris 2 

Some of the commercial UNIX based on BSD are:
• SunOS 4.1.X (now Solaris) 
• DEC's Ultris 
• BSD/OS, 4.4BSD 

Some Free UNIX are:
• Linux, written by Linus Torvalds at University of Helsinki in Finland. 
• FreeBSD and NetBSD, a derivative of 4.4BSD

Conclusion
In this chapter we defined an operating system. We also looked at history of UNIX and features of
UNIX that make it a popular operating system. We also discussed the convergence of different
flavors of UNIX into Single Unix Specification  (SUS) and Portable Operating System Interface for
Computing Environments (POSIX).



Chapter 2. The UNIX Architecture and Command Usage

Introduction
In order  to understand the subsequent  chapters,  we first  need to understand the architecture of
UNIX and the concept of division of labor between two agencies viz., the shell and the kernel. This
chapter introduces the architecture of UNIX. Next we discuss the rich collection of UNIX command
set, with a specific discussion of command structure and usage of UNIX commands. We also look
at  the  man command,  used  for  obtaining  online  help  on  any UNIX command.  Sometimes  the
keyboard sequences don’t work, in which case, you need to know what to do to fix them. Final
topic of this chapter is troubleshooting some terminal problems.

Objectives
2. The UNIX Architecture
3. Locating Commands
4. Internal and External Commands
5. Command Structure and usage
6. Flexibility of Command Usage
7. The man Pages, apropos and whatis
8. Troubleshooting the terminal problems

• The UNIX Architecture

Users

UNIX architecture comprises of two major components viz., the shell and the kernel. The kernel
interacts with the machine’s hardware and the shell with the user.

The kernel is the core of the operating system. It is a collection of routines written in C. It is loaded
into  memory  when  the  system  is  booted  and  communicates  directly  with  the  hardware.  User
programs that need to access the hardware use the services of the kernel via use of system calls and
the kernel performs the job on behalf of the user. Kernel is also responsible for managing system’s
memory, schedules processes, decides their priorities. 

The shell performs the role of command interpreter. Even though there’s only one kernel running on
the system, there could be several shells in action, one for each user who’s logged in. The shell is
responsible  for  interpreting  the  meaning of  metacharacters  if  any,  found on the  command line
before dispatching the command to the kernel for execution.

The File and Proces
A file is an array of bytes that stores information. It is also related to another file in the sense that
both belong to a single hierarchical directory structure.

A process  is  the  second  abstraction  UNIX provides.  It  can  be  treated  as  a  time  image  of  an
executable file. Like files, processes also belong to a hierarchical structure. We will be discussing



the processes in detain in a subsequent chapter.

2. Locating Files
All UNIX commands are single words like ls, cd, cat, etc. These names are in lowercase. These
commands  are  essentially  files containing  programs,  mainly  written  in  C.  Files  are  stored  in
directories, and so are the binaries associated with these commands. You can find the location of an
executable program using type command:

$ type ls
ls is /bin/ls

This means that when you execute ls command, the shell  locates this file in /bin directory and
makes arrangements to execute it.

The Path
The sequence of directories that the shell searches to look for a command is specified in its own
PATH  variable.  These  directories  are  colon  separated.  When  you  issue  a  command,  the  shell
searches this list in the sequence specified to locate and execute it. 

3. Internal and External Commands

Some commands are implemented as part of the shell itself rather than separate executable files.
Such commands that are built-in are called internal commands. If a command exists both as an
internal command of the shell as well as an external one (in /bin or /usr/bin), the shell will accord
top priority to its own internal command with the same name. Some built-in commands are echo,
pwd, etc.

4. Command Structure

UNIX commands take the following general form:
verb [options] [arguments]

where verb is the command name that can take a set of optional options and one or more optional
arguments.
Commands, options and arguments have to be separated by spaces or tabs to enable the shell to
interpret them as words. A contiguous string of spaces and tabs together is called a whitespace. The
shell compresses multiple occurrences of whitespace into a single whitespace. 

Options
An option is preceded by a minus sign (-) to distinguish it from filenames. 
Example: $ ls –l
There must not  be any whitespaces between – and l.   Options are also arguments,  but given a
special name because they are predetermined. Options can be normally compined with only one –
sign. i.e., instead of using

$ ls –l –a –t
we can as well use,

$ ls –lat
Because UNIX was developed by people who had their own ideas as to what options should look
like, there will be variations in the options. Some commands use + as an option prefix instead of -.

Filename Arguments
Many UNIX commands use a filename as argument so that the command can take input from the
file.  If  a  command uses  a filename as argument,  it  will  usually  be the last  argument,  after  all



options. 
Example: cp file1 file2 file3 dest_dir

rm file1 file2 file3
The command with its options and argumens is known as the command line, which is considered as
complete after  [Enter] key is  pressed, so that the entire line is  fed to the shell  as its  input for
interpretation and execution.

Exceptions
Some commands in UNIX like pwd do not take any options and arguments. Some commands like
who may or may not be specified with arguments. The ls command can run without arguments (ls),
with only options (ls –l), with only filenames (ls f1 f2), or using a combination of both (ls –l f1 f2).
Some commands compulsorily  take  options  (cut).  Some commands  like  grep,  sed can  take  an
expression as an argument, or a set of instructions as argument.

5. Flexibility of Command Usage

UNIX provides flexibility in using the commands. The following discussion looks at how 
permissive the shell can be to the command usage.

Combining Commands
Instead of executing commands on separate lines, where each command is processed and executed
before the next could be entered, UNIX allows you to specify more than one command in the single
command line. Each command has to be separated from the other by a ; (semicolon).

wc sample.txt ; ls –l sample.txt
You can even group several commands together so that their combined output is redirected to a file.

(wc sample.txt ; ls –l sample.txt) > newfile
When a command line contains a semicolon, the shell understands that the command on each side
of it needs to be processed separately. Here ; is known as a metacharacter.

Note: When a command overflows into the next line or needs to be split into multiple lines, just
press enter, so that the secondary prompt (normally >) is displayed and you can enter the remaining
part of the command on the next line.

Entering a Command before previous command has finished
You need not  have  to  wait  for  the previous  command to finish before you can  enter  the next
command.  Subsequent  commands  entered  at  the  keyboard  are  stored  in  a  buffer  (a  temporary
storage in memory) that is maintained by the kernel for all keyboard input. The next command will
be passed on to the shell for interpretation after the previous command has completed its execution.

6. man: Browsing The Manual Pages Online

UNIX commands are rather cryptic. When you don’t remember what options are supported by a
command or what its syntax is, you can always view man (short for manual) pages to get online
help. The man command displays online documentation of a specified command. 

A pager is a program that displays one screenful information and pauses for the user to view the
contents. The user can make use of internal commands of the pager to scroll up and scroll down the
information. The two popular pagers are more and less.   more is the Berkeley’s pager, which is a
superior alternative to original pg command. less is the standard pager used on Linux systems. less
if modeled after a popular editor called vi and is more powerful than more as it provides vi-like



navigational  and search facilities.  We can use pagers  with  commands like ls  |  more.  The man
command is configured to work with a pager.

7. Understanding The man Documentation

The  man  documentation  is  organized  in  eight  (08)  sections.  Later  enhancements  have  added
subsections like 1C, 1M, 3N etc.) References to other sections are reflected as SEE ALSO section
of a man page.

When you use man command, it starts searching the manuals starting from section 1. If it locates a
keyword in one section, it won’t continue the search, even if the keyword occurs in another section.
However, we can provide the section number additionally as argument for man command. 

For example, passwd appears in section 1 and section 4. If we want to get documentation of passwd
in section 4, we use,

$ man 4 passwd OR $ man –s4 passwd (on Solaris)

Understanding a man Page
A typical man page for wc command is shown below:

A man page is divided into a number of compulsory and optional sections. Every command doesn’t
need all sections, but the first three (NAME, SYNOPSIS and DESCRIPTION) are generally seen in
all man pages. NAME presents a one-line introduction of the command. SYNOPSIS shows the
syntax used by the command and DESCRIPTION provides a detailed description.

The SYNOPSIS follows certain conventions and rules:
• If a command argument is enclosed in rectangular brackets, then it is optional; otherwise, 

the argument is required.
• The ellipsis (a set if three dots) implies that there can be more instances of the preceding 

word.
• The | means that only one of  the options shows on either side of the pipe can be used.

All the options used by the command are listed in OPTIONS section. There is a separate section 
named EXIT STATUS which lists possible error conditions and their numeric representation.

Note: You can use man command to view its own documentation ($ man man). You can also set the
pager to use with man ($ PAGER=less ; export PAGER). To understand which pager is being used
by man, use $ echo $PAGER.

The following table shows the organization of man documentation.

Section Subject (SVR4) Subject (Linux)
1 User programs User programs
2 Kernel’s system calls Kernel’s system calls
3 Library functions Library functions
4 Administrative file 

formats
Special files (in /dev)

5 Miscellaneous Administrative file formats



6 Games Games
7 Special files (in /dev) Macro packages and conventions
8 Administration commands Administration commands

8. Further Help with man –k, apropos and whatis

man –k: Searches a summary database and prints one-line description of the command.
Example:
$ man –k awk
awk awk(1) -pattern scanning and processing language
nawk nawk(1) -pattern scanning and processing language

apropos: lists the commands and files associated with a keyword.
Example:
$ apropos FTP
ftp ftp(1) -file transfer program
ftpd in.ftpd(1m) -file transfer protocol server 
ftpusers ftpusers(4) -file listing users to be disallowed 

      ftp login privileges
whatis:  lists one-liners  for a command.
Example:
$ whatis cp
cp cp(1) -copy files 

9. When Things Go Wrong

Terminals and keyboards have no uniform behavioral pattern. Terminal settings directly impact the
keyboard operation. If you observe a different behavior from that expected, when you press certain
keystrokes, it means that the terminal settings are different. In such cases, you should know which
keys to press to get the required behavior. The following table lists keyboard commands to try when
things go wrong.
Keystroke   
    or 
command

Function

[Ctrl-h] Erases text
[Ctrl-c] or  
Delete

Interrupts a command

[Ctrl-d] Terminates login session or a program that expects its input from 
keyboard

[Ctrl-s] Stops scrolling of screen output and locks keyboard
[Ctrl-q] Resumes scrolling of screen output and unlocks keyboard
[Ctrl-u] Kills command line without executing it
[Ctrl-\] Kills running program but creates a core file containing the memory

image of the program
[Ctrl-z] Suspends process and returns shell prompt; use fg to resume job
[Ctrl-j] Alternative to [Enter]
[Ctrl-m] Alternative to [Enter]



stty sane Restores terminal to normal status 

Conclusion
In this  chapter,  we looked at  the  architecture  of  UNIX and the  division of  labor  between two
agencies  viz.,  the  shell  and  the  kernel.  We  also  looked  at  the  structure  and  usage  of  UNIX
commands. The man documentation will be the most valuable source of documentation for UNIX
commands.  Also,  when the keyboard sequences  won’t  sometimes work as expected because of
different terminal settings. We listed the possible remedial keyboard sequences when that happens.



Chapter 3. The File System

Introduction
In  this  chapter  we will  look  at  the  file  system of  UNIX.  We also  look at  types  of  files  their
significance.  We then look at  two ways of  specifying a  file  viz.,  with absolute  pathnames and
relative pathnames. A discussion on commands used with directory files viz., cd, pwd, mkdir, rmdir
and ls will be made. Finally we look at some of the important directories contained under UNIX file
system.
Objectives

9. Types of files
10. UNIX Filenames
11. Directories and Files
12. Absolute and Relative Pathnames
13. pwd – print working directory
14. cd – change directory
15. mkdir – make a directory
16. rmdir – remove directory
17. The PATH environmental variable
18. ls – list directory contents
19. The UNIX File System

1. Types of files
A simple description of the UNIX system is this:
“On a UNIX system, everything is a file; if something is not a file, it is a process.”
A UNIX system makes no difference between a file and a directory, since a directory is just
a file containing names of other files. Programs, services, texts, images, and so forth, are all
files.  Input  and  output  devices,  and  generally  all  devices,  are  considered  to  be  files,
according to the system.

Most files  are  just  files,  called  regular  files;  they  contain  normal  data,  for  example  text  files,
executable files or programs, input for or output from a program and so on.
While it is reasonably safe to suppose that everything you encounter on a UNIX system is a file,
there are some exceptions.
Directories: files that are lists of other files.
Special files or Device Files: All devices and peripherals are represented by files. To read or write a
device, you have to perform these operations on its associated file. Most special files are in /dev.
Links: a system to make a file or directory visible in multiple parts of the system's file tree. 
(Domain) sockets: a special file type, similar to TCP/IP sockets, providing inter−process networking
protected by the file system's access control.
Named pipes: act more or less like sockets and form a way for processes to communicate with each
other, without using network socket semantics.

Ordinary (Regular) File
This is the most common file type. An ordinary file can be either a text file or a binary file.
A text file contains only printable  characters and you can view and edit  them. All  C and Java
program sources, shell scripts are text files. Every line of a text file is terminated with the newline
character. 
A binary file, on the other hand, contains both printable and nonprintable characters that cover the
entire ASCII range. The object code and executables that you produce by compiling C programs are



binary files. Sound and video files are also binary files.

Directory File
A directory contains no data, but keeps details of the files and subdirectories that it contains. A
directory file contains one entry for every file and subdirectory that it houses. Each entry has two
components namely, the filename and a unique identification number of the file or directory (called
the inode number).
When you create or remove a file, the kernel automatically updates its corresponding directory by
adding or removing the entry (filename and inode number) associated with the file.

Device File
All the operations on the devices are performed by reading or writing the file representing the
device. It is advantageous to treat devices as files as some of the commands used to access an
ordinary file can be used with device files as well.
Device filenames are found in a single directory structure, /dev. A device file is not really a stream
of characters. It is the attributes of the file that entirely govern the operation of the device. The
kernel identifies a device from its attributes and uses them to operate the device.

2. Filenames in UNIX
On a UNIX system, a filename can consist of up to 255 characters. Files may or may not have
extensions and can consist of practically any ASCII character except the / and the Null character.
You are permitted to use control characters or other nonprintable characters in a filename. However,
you should  avoid  using these characters  while  naming a file.  It  is  recommended that  only  the
following characters be used in filenames:

Alphabets and numerals.
The period (.), hyphen (-) and underscore (_).

UNIX imposes no restrictions on the extension. In all cases, it is the application that imposes that
restriction. Eg. A C Compiler expects C program filenames to end with .c, Oracle requires SQL
scripts to have .sql extension.
A file can have as many dots embedded in its name. A filename can also begin with or end with a
dot.
UNIX is case sensitive; cap01, Chap01 and CHAP01 are three different filenames that can coexist
in the same directory.

3. Directories and Files
A file is a set of data that has a name. The information can be an ordinary text, a user-written
computer program, results of a computation, a picture, and so on. The file name may consist of
ordinary characters, digits and special tokens like the underscore, except the forward slash (/). It is
permitted to use special tokens like the ampersand (&) or spaces in a filename.
Unix organizes files in a tree-like hierarchical structure, with the root directory, indicated
by a forward slash (/), at the top of the tree. See the Figure below, in which part of the hierarchy of
files and directories on the computer is shown.

4. Absolute and relative paths
A path, which is the way you need to follow in the tree structure to reach a given file, can be
described as starting from the trunk of the tree (the / or root directory). In that case, the path starts
with a slash and is called an absolute path, since there can be no mistake: only one file on the



system can comply.
Paths that don't start with a slash are always relative to the current directory. In relative paths we
also use the . and .. indications for the current and the parent directory.

The HOME variable
When you log onto the system, UNIX automatically places you in a directory called the  home
directory. The shell variable HOME indicates the home directory of the user. 

E.g.,
                   $  echo $HOME

/home/kumar
What you see above is an absolute pathname, which is a sequence of directory names starting from
root (/). The subsequent slashes are used to separate the directories.

5. pwd - print working directory
At any time you can determine where you are in the file system hierarchy with the  pwd,  print
working directory, command, 

E.g.,:
        $  pwd

/home/frank/src

6. cd - change directory
You can change to a new directory with the  cd, change directory, command.  cd  will accept both
absolute and relative path names.
Syntax

cd [directory]
Examples

cd changes to user's home directory
cd / changes directory to the system's root
cd .. goes up one directory level
cd ../.. goes up two directory levels
cd /full/path/name/from/root changes directory to absolute path named 

         (note the leading slash)
cd path/from/current/location changes directory to path relative to current  
                                                   location (no leading slash)

7. mkdir - make a directory
You extend your home hierarchy by making sub-directories underneath it. This is done with the 
mkdir, make directory, command. Again, you specify either the full or relative path of the directory.

Examples
mkdir patch Creates a directory patch under current directory
mkdir patch dbs doc Creates three directories under current directory
mkdir pis pis/progs pis/data Creates a directory tree with pis as a directory under 

the current directory and progs and data as subdirectories 
under pis

Note the order of specifying arguments in example 3. The parent directory should be specified first,
followed by the subdirectories to be created under it.

The system may refuse to create a directory due to the following reasons:
1. The directory already exists.



2. There may be an ordinary file by the same name in the current directory.
3. The permissions set for the current directory don’t permit the creation of files and directories by
the user.

8. rmdir - remove directory
A directory needs to be empty before you can remove it. If it’s not, you need to remove the files
first.  Also, you can’t  remove a directory if  it  is  your present working directory; you must first
change out of that directory. You cannot remove a subdirectory unless you are placed in a directory
which is hierarchically above the one you have chosen to remove.

E.g. 
rmdir patch Directory must be empty
rmdir pis pis/progs pis/data Shows error as pis is not empty. However rmdir 

silently deletes the lower level subdirectories progs 
and data.

9. The PATH environment variable
Environmental variables are used to provide information to the programs you use. We have already
seen one such variable called HOME.
A command runs in UNIX by executing a disk file. When you specify a command like  date, the
system will locate the associated file from a list of directories specified in the PATH variable and
then executes it. The PATH variable normally includes the current directory also. 

Whenever you enter any UNIX command, you are actually specifying the name of an executable
file located somewhere on the system. The system goes through the following steps in order to
determine which program to execute:
1. Built in commands (such as cd and history) are executed within the shell.
2. If an absolute path name (such as /bin/ls) or a relative path name (such as ./myprog),   the system
executes the program from the specified directory.
3. Otherwise the PATH variable is used.

10. ls - list directory contents
The command to list your directories and files is ls. With options it can provide information about
the size, type of file, permissions, dates of file creation, change and access.
Syntax

ls [options] [argument]
Common Options
When no argument is used, the listing will be of the current directory. There are many very useful
options for the ls command. A listing of many of them follows. When using the command, string the
desired options together preceded by "-".
-a Lists all files, including those beginning with a dot (.).
-d Lists only names of directories, not the files in the directory
-F Indicates type of entry with a trailing symbol: executables with *, directories with / and 
    symbolic links with @
-R Recursive list
-u Sorts filenames by last access time
-t Sorts filenames by last modification time
-i Displays inode number
-l Long listing: lists the mode, link information, owner, size, last modification (time). If the file is a 
symbolic link, an arrow (-->) precedes the pathname of the linked-to file.



The mode field is given by the -l option and consists of 10 characters. The first character is one of 
the following:
CHARACTER IF ENTRY IS A

d directory
- plain file
b block-type special file
c character-type special file
l symbolic link
s socket

The next 9 characters are in 3 sets of 3 characters each. They indicate the file access permissions:
the first 3 characters refer to the permissions for the user, the next three for the users in the Unix
group assigned to the file, and the last 3 to the permissions for other users on the system.
Designations are as follows:

r read permission
w write permission
x execute permission
- no permission

Examples
1. To list the files in a directory:

$ ls
2. To list all files in a directory, including the hidden (dot) files:

$ ls -a
3. To get a long listing:

$ ls -al
total 24
drwxr-sr-x 5 workshop acs 512 Jun 7 11:12 .
drwxr-xr-x 6 root sys 512 May 29 09:59 ..
-rwxr-xr-x 1 workshop acs 532 May 20 15:31 .cshrc
-rw------- 1 workshop acs 525 May 20 21:29 .emacs
-rw------- 1 workshop acs 622 May 24 12:13 .history
-rwxr-xr-x 1 workshop acs 238 May 14 09:44 .login
-rw-r--r-- 1 workshop acs 273 May 22 23:53 .plan
-rwxr-xr-x 1 workshop acs 413 May 14 09:36 .profile
-rw------- 1 workshop acs 49 May 20 20:23 .rhosts
drwx------ 3 workshop acs 512 May 24 11:18 demofiles
drwx------ 2 workshop acs 512 May 21 10:48 frank
drwx------ 3 workshop acs 512 May 24 10:59 linda

11. The UNIX File System
The  root  directory  has  many  subdirectories.  The  following  table  describes  some  of  the
subdirectories contained under root.
Directory Content 
/bin Common programs, shared by the system, the system administrator and the users. 

/dev 
Contains references to all the CPU peripheral hardware, which are represented as 
files with special properties. 

/etc 
Most important system configuration files are in /etc, this directory contains data 
similar to those in the Control Panel in Windows 

/home Home directories of the common users. 

/lib 
Library files, includes files for all kinds of programs needed by the system and the 
users. 

/sbin Programs for use by the system and the system administrator. 



/tmp 
Temporary space for use by the system, cleaned upon reboot, so don't use this for 
saving any work! 

/usr Programs, libraries, documentation etc. for all user-related programs. 

/var 
Storage for all variable files and temporary files created by users, such as log files, 
the mail queue, the print spooler area, space for temporary storage of files 
downloaded from the Internet, or to keep an image of a CD before burning it. 

Conclusion
In this chapter we looked at the UNIX file system and different types of files UNIX understands. 
We also discussed different commands that are specific to directory files viz., pwd, mkdir, cd, rmdir 
and ls. These commands have no relevance to ordinary or device files. We also saw filenaming 
conventions in UNIX. Difference between the absolute and relative pathnames was highlighted 
next. Finally we described some of the important subdirectories contained under root (/).


